簡易檢索 / 詳目顯示

研究生: 蔡岱凌
Tsai, Dai-Ling
論文名稱: 缺氮氮化碳應用於結合光催化5-羥甲基糠醛氧化與分解水產氫之研究
Nitrogen-deficient Carbon Nitride for Combined Photocatalytic 5- (Hydroxymethyl) furfural Oxidation and Hydrogen Evolution
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 114
中文關鍵詞: 缺氮氮化碳水分解產氫5-羥甲基糠醛氧化
外文關鍵詞: nitrogen-deficient carbon nitride, hydrogen evolution, 5- (hydroxymethyl) furfural oxidation
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 誌謝 IV 目錄 V 圖目錄 X 表目錄 XIX 第一章 緒論 1 1-1前言 1 1-2研究動機 1 第二章 文獻回顧 3 2-1半導體材料的光催化 3 2-1-1光催化的歷史回顧 3 2-1-2光催化的基本原理 3 2-1-3光催化的主要領域 4 2-1-3-1光催化產氫 5 2-1-3-2 CO2光催化還原 6 2-1-3-3光催化降解 6 2-1-3-4金屬離子光催化還原 7 2-1-3-5光催化有機物氧化使產物增值 7 2-2生物質 8 2-3聚合氮化碳 11 2-3-1由超分子複合物合成氮化碳 13 2-3-2硫氰酸鉀後處理氮化碳 20 2-3-3氮化碳光催化產氫結合生物質氧化之應用 22 2-4先前已研究之硫氰酸鉀後處理氮化碳結構分析[33] 27 第三章 實驗 40 3-1實驗材料 40 3-1-1藥品 40 3-1-1-1製備超分子複合物 40 3-1-1-2製備硫氰酸鉀後處理氮化碳 40 3-1-1-3光催化HMF氧化同時產氫實驗 40 3-1-1-4氮化碳製備工作電極和Mott-Schottky量測實驗 41 3-1-2設備 42 3-2實驗流程設計 42 3-3實驗步驟 43 3-3-1以三聚氰胺和三聚氰酸合成的超分子複合物鍛燒成氮化碳 43 3-3-2添加少量2,4,6-三氨基嘧啶取代三聚氰胺合成三聚氰胺、三聚氰酸和2,4,6-三氨基嘧啶的超分子複合物鍛燒成缺氮氮化碳 44 3-3-3硫氰酸鉀後處理氮化碳[33] 45 3-3-4氮化碳應用於水分解產氫之研究 46 3-3-5光沉積鉑金共觸媒後的光觸媒光催化HMF氧化同時產氫實驗 47 3-3-5-1光沉積鉑金共觸媒 47 3-3-5-2光催化HMF氧化同時產氫 48 3-4 氮化碳製備工作電極和Mott-Schottky量測實驗 50 3-4-1氮化碳製備工作電極 50 3-4-2 Mott-Schottky量測實驗 51 3-5分析與鑑定 52 3-5-1掃描式電子顯微鏡 (Scanning Electron Microscope) 52 3-5-2穿透式電子顯微鏡 (Transmission Electron Microscope) 53 3-5-3 X射線繞射儀 (X-ray Diffractometer) 53 3-5-4表面積及奈米孔徑分析儀 (Surface Area and Porosimetric Analyzer) 54 3-5-5元素分析儀 (Elemental Analyzer) 54 3-5-6 X光光電子能譜儀 (X-ray Photoelectron Spectrometer) 55 3-5-7傅立葉轉換式紅外線光譜儀 (Fourier Transform Infrared Spectroscopy) 55 3-5-8紫外光-可見光吸收光譜儀 (UV-visible Absorption Spectrometer) 56 3-5-9光激發螢光光譜儀 (Photoluminescence Spectroscopy) 56 3-5-10時間解析光激發螢光光譜儀 (Time-Resolved Photoluminescence Spectroscopy) 57 3-5-11核磁共振儀 (Nuclear Magnetic Resonance) 57 3-5-12氣相層析儀 (Gas Chromatography) 58 3-5-13高效能液相層析儀 (High Performance Liquid Chromatography) 58 3-5-14 密度泛函理論計算 (Density Functional Theory) 59 第四章 結果與討論 60 4-1氮化碳之分析與鑑定 60 4-1-1氮化碳之形貌與結構分析 61 4-1-2氮化碳之化學微結構分析 68 4-1-3氮化碳之光學特性分析 75 4-2 密度泛函理論DFT模擬計算缺氮氮化碳 (TCN) 之電子結構 79 4-3氮化碳應用於水分解產氫之研究 83 4-4氮化碳應用於結合光催化5-羥甲基糠醛氧化與分解水產氫之研究 84 4-4-1氮化碳應用於結合光催化5-羥甲基糠醛氧化與分解水產氫之產物分析與效能 84 4-4-2優化缺氮氮化碳 (TCN) 於結合光催化5-羥甲基糠醛氧化與分解水產氫實驗前光沉積鉑金共觸媒重量比 99 4-4-3缺氮氮化碳應用於結合光催化5-羥甲基糠醛氧化與分解水產氫之機制探討 101 4-4-4減少取樣以改善氮化碳應用於結合光催化5-羥甲基糠醛氧化與分解水產氫實驗的漏氧情況 105 第五章 結論 109 第六章 參考文獻 111

    1. Kampouri, S. and K.C. Stylianou, Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. Acs Catalysis, 2019. 9(5): p. 4247-4270.
    2. Miyake, Y., et al., Synthesis of carbon nitride oligomer as a precursor of melon with improved fluorescence quantum yield. Materials Advances, 2021. 2(18): p. 6083-6093.
    3. Spasiano, D., et al., Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B-Environmental, 2015. 170: p. 90-123.
    4. Zhu, S.S. and D.W. Wang, Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Advanced Energy Materials, 2017. 7(23): p. 24.
    5. Zhou, M., et al., Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021. 8(24): p. 36.
    6. San Martin, S., M.J. Rivero, and I. Ortiz, Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts, 2020. 10(8): p. 26.
    7. Liu, J., et al., Recent progress on photocatalytic heterostructures with full solar spectral responses. Chemical Engineering Journal, 2020. 393: p. 21.
    8. Fujishima, A. and K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature, 1972. 238(5358): p. 37-+.
    9. Inoue, T., et al., PHOTOELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE IN AQUEOUS SUSPENSIONS OF SEMICONDUCTOR POWDERS. Nature, 1979. 277(5698): p. 637-638.
    10. Balat, M., Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 2008. 33(15): p. 4013-4029.
    11. Yuan, Y.J., et al., Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018. 6(25): p. 11606-11630.
    12. Gaya, U.I. and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2008. 9(1): p. 1-12.
    13. van Putten, R.J., et al., Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 2013. 113(3): p. 1499-1597.
    14. Bozell, J.J. and G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited. Green Chemistry, 2010. 12(4): p. 539-554.
    15. Battula, V.R., A. Jaryal, and K. Kailasam, Visible light-driven simultaneous H-2 production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. Journal of Materials Chemistry A, 2019. 7(10): p. 5643-5649.
    16. Zhu, J.J., et al., Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. Acs Applied Materials & Interfaces, 2014. 6(19): p. 16449-16465.
    17. Liu, F.Y., et al., One-Dimensional Conjugated Carbon Nitrides: Synthesis and Structure Determination by HRTEM and Solid-State NMR. Journal of Physical Chemistry Letters, 2021. 12(42): p. 10359-10365.
    18. Kong, L., et al., Graphitic carbon nitride nanostructures: Catalysis. Applied Materials Today, 2019. 16: p. 388-424.
    19. Wang, Y., X.C. Wang, and M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie-International Edition, 2012. 51(1): p. 68-89.
    20. Wang, Z.H., et al., Engineered Polymeric Carbon Nitride Additive for Energy Storage Materials: A Review. Advanced Functional Materials, 2021. 31(43): p. 32.
    21. Hao, Q., et al., Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Research, 2020. 13(1): p. 18-37.
    22. Zhang, D.L., et al., Polymeric Carbon Nitride-Derived Photocatalysts for Water Splitting and Nitrogen Fixation. Small, 2021. 17(13): p. 28.
    23. Barrio, J. and M. Shalom, Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. Chemcatchem, 2018. 10(24): p. 5573-5586.
    24. Liang, Q.H., et al., Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment. Chemical Engineering Journal, 2021. 405: p. 22.
    25. Shalom, M., et al., Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 2013. 135(19): p. 7118-7121.
    26. Jun, Y.S., et al., From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres. Advanced Functional Materials, 2013. 23(29): p. 3661-3667.
    27. Song, X.P., et al., A Facile and Green Combined Strategy for Improving Photocatalytic Activity of Carbon Nitride. Acs Omega, 2019. 4(4): p. 6114-6125.
    28. Liu, G.Q., M.W. Xue, and Q.P. Liu, Efficient visible light driven 2,4,6-triaminopyrimidine modified graphitic carbon nitride for hydrogen evolution. International Journal of Hydrogen Energy, 2021. 46(5): p. 3789-3797.
    29. Lau, V.W.H., et al., Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nature Communications, 2016. 7: p. 10.
    30. Schlomberg, H., et al., Structural Insights into Poly(Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis. Chemistry of Materials, 2019. 31(18): p. 7478-7486.
    31. Savateev, A., et al., Potassium Poly(heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitride-like Materials for More Efficient Solar Hydrogen and Oxygen Evolution. Chemcatchem, 2017. 9(1): p. 167-174.
    32. Bao, X.L., et al., Photocatalytic Selective Oxidation of HMF Coupled with H-2 Evolution on Flexible Ultrathin g-C3N4 Nanosheets with Enhanced N-H Interaction. Acs Catalysis, 2022. 12(3): p. 1919-1929.
    33. Wu, P.S., et al., Non-photochromic solar energy storage in carbon nitride surpassing blue radicals for hydrogen production. Journal of Materials Chemistry A, 2022. 10(14): p. 7728-7738.
    34. Rosatella, A.A., et al., 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 2011. 13(4): p. 754-793.
    35. Hou, Q.D., et al., Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 2021. 23(1): p. 119-231.
    36. Li, J.J., et al., A theoretical elucidation: why does a SO3H-functionalized imidazolium-based ionic liquid catalyze the conversion of 5-hydroxymethylfurfural to levulinic acid? New Journal of Chemistry, 2017. 41(17): p. 8714-8720.
    37. Guo, J.J., K. Wang, and X.T. Wang, Photocatalytic reduction of CO2 with H2O vapor under visible light over Ce doped ZnFe2O4. Catalysis Science & Technology, 2017. 7(4): p. 6013-6025.
    38. 陳致嘉, 二氧化錫/氮化碳異質結構應用於光催化產氫與生物質轉化之研究, in 化學工程學系. 2021, 國立成功大學: 台南市. p. 108.
    39. Fina, F., et al., Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chemistry of Materials, 2015. 27(7): p. 2612-2618.
    40. Huang, K.H., S.S. Hou, and J.J. Wu, Bridging Functional Groups Governing the Charge Transfer Dynamic in an Amorphous Carbon Nitride Allotropic Heterojunction toward Efficient Solar Hydrogen Evolution. Solar Rrl, 2021. 5(1): p. 11.
    41. Nimbalkar, D.B., et al., Microscopic Revelation of Charge-Trapping Sites in Polymeric Carbon Nitrides for Enhanced Photocatalytic Activity by Correlating with Chemical and Electronic Structures. Acs Applied Materials & Interfaces, 2019. 11(21): p. 19087-19095.
    42. LIAO, Yongliang, et al. A facile method of activating graphitic carbon nitride for enhanced photocatalytic activity. Physical Chemistry Chemical Physics, 2015, 17.41: 27826-27832.
    43. ABELLÁN, M. N., et al. Evaluation of two types of TiO2-based catalysts by photodegradation of DMSO in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202.2-3: 164-171.
    44. YUAN, Jian-Ping; CHEN, Feng. Simultaneous separation and determination of sugars, ascorbic acid and furanic compounds by HPLC—dual detection. Food Chemistry, 1999, 64.3: 423-427.
    45. DURU, Neşe; KARADENIZ, Feryal; ERGE, Hande Selen. Changes in bioactive compounds, antioxidant activity and HMF formation in rosehip nectars during storage. Food and Bioprocess Technology, 2012, 5.7: 2899-2907.

    無法下載圖示 校內:2027-09-27公開
    校外:2027-09-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE