| 研究生: |
蔡岱凌 Tsai, Dai-Ling |
|---|---|
| 論文名稱: |
缺氮氮化碳應用於結合光催化5-羥甲基糠醛氧化與分解水產氫之研究 Nitrogen-deficient Carbon Nitride for Combined Photocatalytic 5- (Hydroxymethyl) furfural Oxidation and Hydrogen Evolution |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 缺氮氮化碳 、水分解產氫 、5-羥甲基糠醛氧化 |
| 外文關鍵詞: | nitrogen-deficient carbon nitride, hydrogen evolution, 5- (hydroxymethyl) furfural oxidation |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Kampouri, S. and K.C. Stylianou, Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. Acs Catalysis, 2019. 9(5): p. 4247-4270.
2. Miyake, Y., et al., Synthesis of carbon nitride oligomer as a precursor of melon with improved fluorescence quantum yield. Materials Advances, 2021. 2(18): p. 6083-6093.
3. Spasiano, D., et al., Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B-Environmental, 2015. 170: p. 90-123.
4. Zhu, S.S. and D.W. Wang, Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Advanced Energy Materials, 2017. 7(23): p. 24.
5. Zhou, M., et al., Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021. 8(24): p. 36.
6. San Martin, S., M.J. Rivero, and I. Ortiz, Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts, 2020. 10(8): p. 26.
7. Liu, J., et al., Recent progress on photocatalytic heterostructures with full solar spectral responses. Chemical Engineering Journal, 2020. 393: p. 21.
8. Fujishima, A. and K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature, 1972. 238(5358): p. 37-+.
9. Inoue, T., et al., PHOTOELECTROCATALYTIC REDUCTION OF CARBON-DIOXIDE IN AQUEOUS SUSPENSIONS OF SEMICONDUCTOR POWDERS. Nature, 1979. 277(5698): p. 637-638.
10. Balat, M., Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 2008. 33(15): p. 4013-4029.
11. Yuan, Y.J., et al., Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018. 6(25): p. 11606-11630.
12. Gaya, U.I. and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2008. 9(1): p. 1-12.
13. van Putten, R.J., et al., Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 2013. 113(3): p. 1499-1597.
14. Bozell, J.J. and G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited. Green Chemistry, 2010. 12(4): p. 539-554.
15. Battula, V.R., A. Jaryal, and K. Kailasam, Visible light-driven simultaneous H-2 production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. Journal of Materials Chemistry A, 2019. 7(10): p. 5643-5649.
16. Zhu, J.J., et al., Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. Acs Applied Materials & Interfaces, 2014. 6(19): p. 16449-16465.
17. Liu, F.Y., et al., One-Dimensional Conjugated Carbon Nitrides: Synthesis and Structure Determination by HRTEM and Solid-State NMR. Journal of Physical Chemistry Letters, 2021. 12(42): p. 10359-10365.
18. Kong, L., et al., Graphitic carbon nitride nanostructures: Catalysis. Applied Materials Today, 2019. 16: p. 388-424.
19. Wang, Y., X.C. Wang, and M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie-International Edition, 2012. 51(1): p. 68-89.
20. Wang, Z.H., et al., Engineered Polymeric Carbon Nitride Additive for Energy Storage Materials: A Review. Advanced Functional Materials, 2021. 31(43): p. 32.
21. Hao, Q., et al., Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Research, 2020. 13(1): p. 18-37.
22. Zhang, D.L., et al., Polymeric Carbon Nitride-Derived Photocatalysts for Water Splitting and Nitrogen Fixation. Small, 2021. 17(13): p. 28.
23. Barrio, J. and M. Shalom, Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers. Chemcatchem, 2018. 10(24): p. 5573-5586.
24. Liang, Q.H., et al., Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment. Chemical Engineering Journal, 2021. 405: p. 22.
25. Shalom, M., et al., Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 2013. 135(19): p. 7118-7121.
26. Jun, Y.S., et al., From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres. Advanced Functional Materials, 2013. 23(29): p. 3661-3667.
27. Song, X.P., et al., A Facile and Green Combined Strategy for Improving Photocatalytic Activity of Carbon Nitride. Acs Omega, 2019. 4(4): p. 6114-6125.
28. Liu, G.Q., M.W. Xue, and Q.P. Liu, Efficient visible light driven 2,4,6-triaminopyrimidine modified graphitic carbon nitride for hydrogen evolution. International Journal of Hydrogen Energy, 2021. 46(5): p. 3789-3797.
29. Lau, V.W.H., et al., Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nature Communications, 2016. 7: p. 10.
30. Schlomberg, H., et al., Structural Insights into Poly(Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis. Chemistry of Materials, 2019. 31(18): p. 7478-7486.
31. Savateev, A., et al., Potassium Poly(heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitride-like Materials for More Efficient Solar Hydrogen and Oxygen Evolution. Chemcatchem, 2017. 9(1): p. 167-174.
32. Bao, X.L., et al., Photocatalytic Selective Oxidation of HMF Coupled with H-2 Evolution on Flexible Ultrathin g-C3N4 Nanosheets with Enhanced N-H Interaction. Acs Catalysis, 2022. 12(3): p. 1919-1929.
33. Wu, P.S., et al., Non-photochromic solar energy storage in carbon nitride surpassing blue radicals for hydrogen production. Journal of Materials Chemistry A, 2022. 10(14): p. 7728-7738.
34. Rosatella, A.A., et al., 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 2011. 13(4): p. 754-793.
35. Hou, Q.D., et al., Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 2021. 23(1): p. 119-231.
36. Li, J.J., et al., A theoretical elucidation: why does a SO3H-functionalized imidazolium-based ionic liquid catalyze the conversion of 5-hydroxymethylfurfural to levulinic acid? New Journal of Chemistry, 2017. 41(17): p. 8714-8720.
37. Guo, J.J., K. Wang, and X.T. Wang, Photocatalytic reduction of CO2 with H2O vapor under visible light over Ce doped ZnFe2O4. Catalysis Science & Technology, 2017. 7(4): p. 6013-6025.
38. 陳致嘉, 二氧化錫/氮化碳異質結構應用於光催化產氫與生物質轉化之研究, in 化學工程學系. 2021, 國立成功大學: 台南市. p. 108.
39. Fina, F., et al., Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chemistry of Materials, 2015. 27(7): p. 2612-2618.
40. Huang, K.H., S.S. Hou, and J.J. Wu, Bridging Functional Groups Governing the Charge Transfer Dynamic in an Amorphous Carbon Nitride Allotropic Heterojunction toward Efficient Solar Hydrogen Evolution. Solar Rrl, 2021. 5(1): p. 11.
41. Nimbalkar, D.B., et al., Microscopic Revelation of Charge-Trapping Sites in Polymeric Carbon Nitrides for Enhanced Photocatalytic Activity by Correlating with Chemical and Electronic Structures. Acs Applied Materials & Interfaces, 2019. 11(21): p. 19087-19095.
42. LIAO, Yongliang, et al. A facile method of activating graphitic carbon nitride for enhanced photocatalytic activity. Physical Chemistry Chemical Physics, 2015, 17.41: 27826-27832.
43. ABELLÁN, M. N., et al. Evaluation of two types of TiO2-based catalysts by photodegradation of DMSO in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202.2-3: 164-171.
44. YUAN, Jian-Ping; CHEN, Feng. Simultaneous separation and determination of sugars, ascorbic acid and furanic compounds by HPLC—dual detection. Food Chemistry, 1999, 64.3: 423-427.
45. DURU, Neşe; KARADENIZ, Feryal; ERGE, Hande Selen. Changes in bioactive compounds, antioxidant activity and HMF formation in rosehip nectars during storage. Food and Bioprocess Technology, 2012, 5.7: 2899-2907.
校內:2027-09-27公開