簡易檢索 / 詳目顯示

研究生: 鍾仁彰
Zhong, Ren-Zhang
論文名稱: 壓密應力比 相對密度與細料含量對砂土液化行為影響之研究
指導教授: 李德河
Lee, Der-Her
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 182
中文關鍵詞: 液化壓密應力比
外文關鍵詞: consolidation stress ratio, liquefaction
相關次數: 點閱:68下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   根據921集集大地震曾發生液化災害地區之現場調查研究,結果發現液化災害區除了常見於地表空曠的水平地層之外。於土壩、填土堤以及結構物基礎周邊區域,同樣有液化災情發生。由於水平地層下的土壤元素與結構物附近下之土壤元素其最大不同處,在於後者承受反覆剪應力的作用面上,已存在有初始靜態剪應力。因此有關不同初始剪應力狀態對土體液化行為影響,實有探討之必要。本研究一併將壓密應力比、相對密度與細料含量納入對砂土液化強度與體積應變之影響因素。

      關於本研究之試驗規劃除針對等向與非等向壓密試驗,均規劃有Dr=40%、50%、60%等3種之外,並針對試體內所添加之無塑性細料含量亦均包含有FC=<5%、16%、40%等三種配比,而另於等向壓密試體部份,再增加FC=28%。再則對於試體壓密應力比(Kc)部份,除Kc=1.0為等向壓密外,再增選定Kc=1.5與Kc=2.0等兩種非等向壓密應力比。

      根據上述規劃進行一系列動態三軸試驗,並歸納出幾點成果如下:

    A. 等向壓密試體部份
    1.當相對密度不論為40%、50%、60%,砂土抗液化強度隨著細料含量增加而逐漸減少。在相同細料含量下,則隨相對密度增加而增加。
    2.液化後體積應變,則隨相對密度增加或細料含量減少而減少。

    B. 非等向壓密試體部份
    1.當以εmax=5%或10%作為破壞準則判定時,試體動態強度值隨著Kc值增加呈現增加趨勢,且在高相對密度下其趨勢更是明顯。
    2.在體積應變部份,主要視試體受動態作用所激發孔隙水壓比大小而 定,一般隨著激發孔隙水壓比愈大,體積應變亦愈大。並且非等向壓密試體均較等向壓密試體之體積應變來得為小。
    3.壓密應力比對體積應變之影響比相對密度與細料含量來的大且顯著。

    none

    摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅶ 圖目錄 Ⅸ 符號說明 ⅩⅨ 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 2 1-3 論文內容 2 第二章 文獻回顧 5 2-1 土壤液化 5 2-1-1 液化之現象及定義 6 2-2 反覆動態三軸之試驗原理 9 2-3 土壤液化阻抗之影響因素 10 2-3-1 試體準備方法 11 2-3-2 相對密度 12 2-3-3 圍壓 13 2-3-4 顆粒特性 13 2-3-5 過壓密比(OCR)與側向土壓力係數(Ko) 14 2-3-6 前期應力與應變歷史 15 2-3-7 飽和度、背水壓與滲透性 15 2-3-8 取樣擾動之影響 16 2-3-9 試體尺寸與橡皮模屈從(貫入)效應 16 2-3-10 細粒料含量對液化潛能之影響 17 2-3-11 細粒料塑性對液化潛能之影響 22 2-3-12 初始剪應力與壓密應力比 23 2-4 液化後之體積應變 25 2-5 液化後土壤之液化阻抗 29 第三章 試驗計劃與內容 58 3-1 試驗砂樣 58 3-2 試驗計劃 59 3-3 試驗儀器與設備 60 3-3-1 軸壓系統與土壤三軸室 61 3-3-2 空氣與水控制單元 61 3-3-3 訊號放大器 62 3-3-4 量測系統 62 3-3-5 資料擷取系統 63 3-4 試驗方法 64 3-4-1 試體準備方式及製作 64 3-4-2 試體飽和 66 3-4-3 試體壓密 67 3-4-4 動態加載 68 3-4-5 體積應變試驗 68 3-4-6 試驗資料處理 69 第四章 等向壓密下液化試驗結果與分析 80 4-1 常用名詞之定義 80 4-2 破壞準則之定義 81 4-3 試驗組數及其結果 84 4-4 不同相對密度對土壤液化強度曲線之影響 84 4-4-1 相對密度與液化阻抗之關係 84 4-4-2 相對密度與反覆剪應力比之關係 85 4-5 細粒料含量對土壤液化強度之探討 85 4-5-1 細粒料含量對液化曲線之影響 85 4-5-2 細粒料含量與反覆剪應力比之關係 86 4-6 土壤孔隙比與液化強度之關係 87 4-7 土壤乾密度與液化強度之關係 88 4-8 反覆荷重作用下土壤內孔隙水壓之變化 88 4-8-1 土壤孔隙水壓激發情形 89 4-8-2 土壤相對密度對孔隙水壓激發之影響 90 4-8-3 土壤細粒料含量對孔隙水壓激發之影響 90 4-9 土壤液化後體積應變之探討 91 4-9-1 相對密度與體積應變之關係 91 4-9-2 細粒料含量與體積應變之關係 92 4-9-3 反覆剪應力比與體積應變之關係 92 第五章 非等向壓密下液化試驗結果與分析 122 5-1 動態三軸試驗土壤之破壞模式 122 5-2 破壞準則之定義 122 5-3 土壤動態強度之定義 123 5-4 土壤動態變形之行為 124 5-5 不同相對密度與細粒料含量,Kc值對 動態強度之影響 125 5-5-1 細粒料含量FC=<5% 125 5-5-2 細粒料含量FC=16% 126 5-5-3 細粒料含量FC=40% 127 5-6 體積應變試驗結果與分析 129 5-6-1 地震與土壤沉陷之關係 129 5-7 不同相對密度與細粒料含量,Kc值對體積應變之影響 130 5-7-1 細粒料含量FC=<5% 130 5-7-2 細粒料含量FC=16% 131 5-7-3 細粒料含量FC=40% 131 5-8 動態三軸之有效應力路徑 132 5-9 動態三軸之破壞包絡線 133 第六章 結論與建議 170 6-1 結論 170 6-1-1 等向壓密試體部分 170 6-1-2 非等向壓密試體部分 171 6-2 建議 172 參考文獻 174

    [1]吳偉特,「台灣地區砂性土壤液化潛能之初步分析」,中國土木水 利期刊,第六卷,第二期,第39-70頁,(1979)。
    [2] Seed, H. B., and Lee, K. L., “Liquefaction of Saturated Sands during Cyclic Loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol.92, No. SM6, pp.105-134, (1966).
    [3]林美聆、廖洪鈞、翁作新,國家地震工程研究中心,「九二一集集大地震全面勘災報告,大地工程震災調查」,(1999)。
    [4] Yoshimi, Y., and Ohoka, H., “Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sand,” Soils and Foundations, JSSMFE, Vol.15, No.3, pp.27-40, (1975).
    [5]Lee, K. L., and Seed, H. B., “Dynamic Strength of Anisotropically Consolidated Sand,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.93, No. SM5, pp.169-191, (1967).
    [6]楊志文,「全機率土壤液化評估法之研究」,國立中央大學土木工程研究所,博士論文,(2003)。
    [7] Hazen, A., “Hydraulic Fill Dams,” ASCE, Vol.83, pp.1713-1745, (1920).
    [8] Casagrande, A., “Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills,” Journal of Boston Society of Civil Engineering, reprinted in Contributions to Soil Mechanics 1925-1940, pp.60-64, (1936).
    [9] Terzaghi, K., and Peck, R. B., “Soil Mechanics in Engineering Practice,” John Willy and Sons, Inc., 2nd edition, (1948).
    [10] Mogami and Kubo, “The Behavior of Soil During Vibration,” Proceeding of the 3rd International Conference on Soil Mechanics and Foundation Engineering, pp.152-153, (1953).
    [11] The Committee on Soil Dynamics of the Geotechnical Engineering Division. “Definition of Terms Related to Liquefaction,” Journal of Geotechnical Engineering Division, ASCE, Vol.104, GT9, September, pp.1197-1200, (1978).
    [12] Braja M.Das, “Fundamentals of Soils Dynamics,” New York:Elsevier Science Pub., (1983).
    [13] Marcuson, W. F., Ⅲ, “Definition of term related to liquefaction,”
    Journal of Geotechnical Engineering Division, ASCE, Vol.103, No.
    GT6, pp.565-588, (1978).
    [14] Seed, H. B., “Soil Liquefaction and Cyclic Mobility Evaluation for
    Level Ground During Earthquakes,” Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No. GT2, pp.201-255, (1979).
    [15] Youd, T. L., and Idriss, I. M., Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistence of Soils, Technical Report NCEER-97-0022, (1997).
    [16]李咸亨、陳慈慧,「液化與地震災害」,國家地震工程研究中心簡訊,第21期,(1997)。
    [17] Kramer, S. L., “Geotechnical Earthquake Engineering,” Prentice Hall, Upper Saddle River, New Jersey, (1996).
    [18]陳名利,「以剪力模數評估砂土液化潛能之研究」,國立台灣工業技術學院工程技術研究所營建工程組,碩士論文,(1990)。
    [19]范恩碩,「以九二一集集地震案例探討細料對液化潛能評估之影響」,國立成功大學土木工程研究所,博士論文,(2004)。
    [20]Ishihara, K., “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol.43, No.3, pp351-415, (1993).
    [21] Ladd, R. S., “Preparing Test Specimens Using Undercompaction,” Geotechnical Testing Journal, GTJODJ, Vol.1, No.1, March, pp.16-23, (1978).
    [22]吳偉特、楊騰芳,「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,(1987)。
    [23]簡連貴、葉國樑、胡淵南,「細料含量對抽砂回填土壤動態特性之影響」,中國土木水利工程學刊,第七卷,第四期,(1995)。
    [24]蔡宗宏,「台灣西部近岸抽砂回填土壤液化潛能之研究」,國立台灣海洋大學河海工程研究所,碩士論文,(1993)。
    [25] Seed, H. B., and Idriss, I. M., “Analysis of Soil Liquefaction: Niigata Earthquake,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No.SM3, pp.83-108, (1967).
    [26] Vaid, Yoginder P., et al., “Confining Pressure, Grain Angularity, and Liquefaction,” Journal of the Geotechnical Engineering, ASCE, Vol.111, No.10, pp.1229-1235, (1985).
    [27] Mulilis, J. P., “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands.” Report No. EERC 75-18, U.C. Berkeley Earthquake Engineering Research Center, (1975).
    [28] Lee and Fitton, “Factor Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquake on Soils and Foundations, ASTM, STP450, pp.71-96, (1969).
    [29] Seed, H. B., and Idriss, I. M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM9, pp.1249-1273, (1971).
    [30]Ishibashi, I., Shrif, M. A., and Cheng, W. L., “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction,” Soils and Foundations, JSSMFE, Vol.22, No.1, pp.37-48, (1982).
    [31]鍾毓東、謝百鍾,「簡易土壤液化分析法」,結構工程,第一卷,第三期,(1986)。
    [32]Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effect of Overconsolidation on Liquefaction Characteristics of Sand Containing Fine,” Dynamic Geotechnical Test, ASCE, STP654, American Society for Testing and Materials, pp.246-264, (1978).
    [33]夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,(1992)。
    [34] Ishihara, K., and Okada, Shigeru, “Effects of Stress History on Cyclic
    Behavior of Sand,” Soils and Foundations, Vol.18, No.4, pp.29-45,
    (1978).
    [35] Xia, H., and Hu, T., “Effects of Saturation and Back Pressure on Sand Liquefaction ,” Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1347-1362, (1991).
    [36]鄭文隆,「淺談地震作用下基礎土壤液化及液化潛能評估法」,現代營建,第二卷,第一期,(1981)。
    [37]Yoshimi, Y., Tokimatsu, K., and Hosaka, Y., “Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples,” Soils and Foundations, Vol.29, No.1, pp.93-104, Mar. (1989).
    [38] Tokimatsu, K., and Nakamura, K., “A Liquefaction Test without Membrane Penetration Effects,” Soils and Foundations, Vol.26, No.4, pp.127-138, Dec, (1986).
    [39] Evans, M. D., Seed, H. B., and Seed, R. B., “Membrane Compliance and Liquefaction of Sliced Gravel Specimens,” Journal of Geotechnical Engineering, ASCE, Vol.118, No.6, pp.856-872, (1992).
    [40] Miura, S., and Kawamura, S., “A Procedure Minizing Membrane
    Penetration Effects in Undrained Triaxial Test,” Soils and Foundations,
    Vol.36, No.4, pp.119-126, (1996).
    [41] Singh, S., “Liquefaction characteristics of silts,” Geotechnical and
    Geological Engineering, Vol.14, ASCE, pp.1-19, (1996).
    [42]陳嘉裕,「細粒料含量對砂土液化潛能之影響研究」,國立成功大學
    土木工程研究所,碩士論文,(1999)。
    [43]張清秀,「黏土含量對福隆砂液化潛能之影響」,國立台灣大學土木
    工程研究所,碩士論文,(1982)。
    [44] Carmine P. Polito, James R. Martin Ⅱ, “Effeccts of nonplastic fines
    on the liquefaction resistance of sands,” Journal of Geotechnical and
    Geoevironmental Engineering, ASCE, pp.408-414, (2001).
    [45] Shen, C. K., Vrymoed, J. L., and Uyeno, C. K., “The effect of fines
    on liquefaction of sands,” Proceeding of the Ninth International
    Conference on Soil Mechanics and Foundation Engineering, Vol.2,
    pp.381-385, (1977).
    [46] Chang, N. Y., Yeh, S. T., and Kaufman, L. P., “Liquefaction potential
    of clean and silty sands,” Proceeding of the Third International
    Earthquake Microzonation Conference, Vol.2, pp.1017-1032, (1982).
    [47]楊沂恩,「細料含量及塑性指數對砂土液化影響之研究」,國立成功
    大學土木工程研究所,碩士論文,(1984)。
    [48] Erten, D., and Mather, M. H., “Cyclic undrained behavior of silty
    sand,” Soil Dynamics and Earthquake Engineering, Vol.14, pp.115-123, (1995).
    [49] Jerry A. Yamamuro, and Poul V. Lade, “Experiments and modeling of silty sands susceptible to static liquefaction,” Mechanics of
    Cohesive-frictional Meterials, Vol.4, pp.545-564, (1999).
    [50] Jerry A. Yamamuro, and Kelly, M., “Monotonic and cyclic liquefaction of very loose sands with high silt content,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp.314-323, (2001).
    [51] Ishihara, K., and Koseki, J., “Cyclic shear strength of fines-containing sands,” Earthquake and Geotech. Engrg., Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo, pp.101-106, (1989).
    [52] Tianqiang Guo, Shamsher Prakash, “Liquefaction of silts and silt-clay mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, pp.706-710, (1999).
    [53] EI Hosri, M. S., Biarez, H., Hicher, P. Y., “Liquefaction characteristics of silty clay,” Proc., 8th World Conf. on Earthquake Engrg., Prentice-Hall, Englewood Cliffs, N. J., Vol.3, pp.277-284, (1984).
    [54] Selig, Ernest T. and Chang, Ching S., “Soil Failure Modes in Undrain Cyclic Loading,” J. Geotech. Engrg. Div., ASCE, Vol.107, No. GT 5, pp. 539-551, (1981).
    [55] Yoshimi, Y., and Tokimatsu, K., “Two Dimensional Pore Pressure Changes in Sand Deposits During Earthquakes,” 2nd International Conference on Microzonation for Safer Construction, Vol.2, pp853-863, (1978).
    [56]吳和融,「非等向壓密對砂性土壤液化潛能影響之研究」,國立台灣大學土木工程研究所,碩士論文,(1987)。
    [57] Vaid, Y. P., and Finn, W. D. L., “Static Shear and Liquefaction Potential,” Journal of Geotechnical Engineering Division, ASCE, Vol.105, No.GT10, pp.1233-1246, (1979).
    [58] Vaid, Y. P., and Chern, J. C., “Effects of Static Shear on Resistance to Liquefaction,” Soils and Foundations, Vol.23, No.1, pp.47-60, (1983).
    [59]鄭清江,「砂質土壤受非等向壓密後之動態變形」,國立中央大學土木工程研究所,碩士論文,(1985)。
    [60] Vaid, Y. P., and Chern, J. C., “Cyclic and Monotonic Undrained Response of Saturated Sands,” Proc. on Geotech. Eng. Div., ASCE, Convention in Detroit, Michigan, (1985).
    [61]李建中、簡連貴、鄭清江,「含初始剪應力之砂性土壤變形特性之研究」,中國土木水利工程學刊,第三卷,第四期,(1991)。
    [62] Lee, K. L., and Albaisa, A., “Earthquake Induced Settlements in Saturated Sands,” Journal of the Geotechnical Engineering Division, ASCE, Vol.100, No.GT4, pp.387-405, (1974).
    [63] Tatsuoka, F., Sasaki, T., and Yamada, S., “Settlement in Saturated Sand Induced by Cyclic Undrained Simple Shear,” Proc., 8th World Conf. Earthq. Engrg., Vol.3, pp.95-102, (1984).
    [64] Tokimatsu K. and Seed, H.B., “Evaluation of Settlements in Sands Due to Earthquake Shaking,” Journal of Geotechnical Engineering Division, ASCE, Vol.113, No.GT8, pp.861-878, (1987).
    [65] Nagase, H., and Ishihara, K., “Liquefaction-Induced Compaction and Settlement of Sand During Earthquakes,” Soils and Foundations, Vol.28, No.1, pp.65-76, (1988).
    [66] Ishihara, K., and Yoshimi, M., “Evaluation of Settlements in Sand Deposits Following Liquefaction During Earthquakes,” Soils and Foundations, Vol.32, No.1, pp.173-188, Mar, (1992).
    [67] Constantine, A. S., Bouckovalas, G., and Whitman, R. V., “Analytical Perdiction of Earthquake-Induced Permanent Deformations,” Journal of Geotechnical Engineering, Vol.117, No.10, pp.1471-1491, (1991).
    [68]足立雅樹、安原一哉、福島正明,「非塑性シルト質土の液状化とそれに伴う体積変化特性」,土木學會論文集(日文),
    No.535,pp.145-154, (1996).
    [69]林金成、陳錦清,「水平砂質地盤震後沉陷量之研究」,第五屆大地工程學術研究討論會論文集,第一冊,第77-84頁,福隆,(1993)。
    [70]紀雲曜,「高雄縣永安沿海地區沖積層下陷及其潛能評估方法之研究」,國立成功大學土木工程研究所,博士論文,(1997)。
    [71] Nemat-Nasser, S., and Tobita, Y., “Influence of Fabric on Liquefaction and Densification Potential of Cohesionless Sand,” Mechanical of Material, Vol.1, pp.43-62, (1982).
    [72] Nemat-Nasser, S., and Takahashi, K., “Liquefaction and Fabric of Sand,” Journal of Geotechnical Engineering Division, ASCE, Vol.110, No.9, pp.1291-1306, (1984).
    [73]柯子昭,「麥寮砂之液化阻抗與體積應變特性之研究」,國立成功大學土木工程研究所,碩士論文,(2004)。
    [74] Lambe, T. W., and Whitman, R.V., “Soil Mechanics,” SI Version, John
    Wiley & Sons, New York, (1979).
    [75] Mulilis, J. P., “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U.C. Berkeley Earthquake Engineering Research Center, (1975).
    [76] Seed, H.B., I.M. Idriss, and I. Arango, “Evaluation of Liquefaction Potential Using Field Performance Data,” Journal of Geotechnical Engineering, ASCE, Vol.3, pp.458-482, (1983).
    [77] Fumio Tatsuoka, Toshio Iwasaki, and Ken-ichi Tokida, “A Method for Estimating Undrained Cyclic Strength of Sandy Soils Using Standard Penetration Resistences,” Soils and Foundations, Vol.18, No.3, Sept, pp.43-58, (1978).
    [78] Seed, H.B., Martin, P.P., and Lysmer, J., “Pore Water Pressure Changes During Soils Liquefaction,” ASCE, Vol.102, No.GT4, pp.323-344, (1976).
    [79]黃俊鴻,「水平地盤受震反應分析」,國立台灣大學土木工程研究所,博士論文,(1990)。
    [80] Shosuke Toki, Fumio Tatsuoka, Seiichi Miura, Yoshiaki Yoshimi, Susumu Yasuda and Yorio Makihara, “Cyclic Undrained Triaxial Strength of Sand by A Cooperative Test Program,” Soils and Foundations, Vol.26, No.3, Sept, pp.117-128, (1986).
    [81]吳東霖,「初始剪應力對孔隙水壓激發行為影響之研究」,國立中興大學土木工程研究所,碩士論文,(1992)。
    [82]黃信智,「細料含量與非均向壓密對高雄前鎮河岸邊土壤液化現象之影響」,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文,(2003)。
    [83]Been, K., and Jefferies, M. G., and Hachey, J., “A Critical State of Sand,”Geotechnique, 41(3), pp.365-381, (1991).
    [84]許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程研究所,碩士論文,(2003)。

    下載圖示 校內:2008-08-23公開
    校外:2010-08-23公開
    QR CODE