| 研究生: |
張為智 Chang, Wei-Zhi |
|---|---|
| 論文名稱: |
二維磁性半導體之二硫化鉬摻雜鐵的物理性質研究 Physical properties of Fe doped Molybdenum Disulfide in Two-dimensional magnetic Semiconductors |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 二硫化鉬 、拉曼光譜 、離子束濺射 |
| 外文關鍵詞: | MoS2, Iron, Ion Beam Sputter, Raman spectrometer, OMCD |
| 相關次數: | 點閱:94 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中以離子束濺射系統(Ion Beam Sputter system) 濺鍍鉬金屬在藍寶石C軸取向的(Al2O3(0001)) 基板上,將 2 克硫粉放置上風處,再將不同重量的二硫化鐵與三氧化鉬粉末放置在中間處,二硫化鉬粉末靠近基板的一端,接著66毫克的三氧化鉬粉末放置在靠近硫粉的一端,通入氮氣至壓力為 0.72 torr,將樣品放置管爐中心升溫至 815℃,升溫速率為 20℃/min,並固定持溫35分鐘,並探討摻雜定量三氧化鉬粉末對製備大面積二硫化鉬薄膜的影響,藉由提高退火溫度、再降低三氧化鉬粉末的量,得到固定厚度鉬金屬硫化之薄膜較佳的晶向。接著再以沉積不同厚度的鉬金屬與使用固定的退火條件,並加入不同量的二硫化鐵粉末以及三氧化鉬粉末66毫克一起硫化,得到定量二硫化鉬的磁性摻雜之較佳的薄膜晶向以及其磁性的變化。
量測機制上,使用拉曼光譜儀(Raman Spectrometer)、X 光光電子能譜(X-ray photoemission spectroscopy, XPS)做薄膜的定性分析,得知成功摻雜鐵的 MoS2 薄膜,在 X 光繞射(X-ray diffraction, XRD)的分析中MoS2摻雜鐵的樣品具有單晶 c 軸取向的晶向,再以超導量子干涉元件(Superconducting Quantum Interference Device, SQUID)、可見光磁圓二色性光譜(Optical magnetic circular dichroism, OMXD)量測薄膜的磁性。
結果顯示,實驗中成功地將Fe原子原位取代摻雜到MoS2薄膜中。我們在Fe:MoS2光致發光中發現了明確的Fe相關的光譜特徵,該特徵在室溫下穩定。此外,也發現Fe:MoS2透過超導量子干涉元件量測薄膜中的磁滯現象顯示為鐵磁性。
We prepared the undoped and Fe-doped MoS2 layered crystals to compare their electrical and magnetic properties. In this experiment, we have investigated the ferromagnetic properties of large-area molybdenum disulfide (MoS2) thin film on a c plane sapphire substrate by iron using a Ion Beam Sputter(IBS) system and the tube furnace. We found that the sample has a single-crystalline c-plane orientation by X-ray diffraction (XRD) analysis. For elemental quality of Fe-doped MoS2 analysis through the Raman Spectrometer, X-ray photoemission spectroscopy (XPS). We observe the magnetic properties of the Fe-doped MoS2 film from the optical magnetic circular dichroism (OMCD), and the superconducting quantum interference device (SQUID).
[1] Li, Q., Zhao, X., Deng, L., Shi, Z., Liu, S., Wei, Q., ... & Peng, B. (2020). Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2. ACS nano, 14(4), 4636-4645.
[2] Park, C. S., Shon, Y., Lee, J., & Kim, E. K. (2020). Ferromagnetic properties of MoS2 film doped by Fe using chemical vapour deposition. Solid State Communications, 306, 113776.
[3] Fu, S., Kang, K., Shayan, K., Yoshimura, A., Dadras, S., Wang, X., ... & Yang, E. H. (2020). Enabling Room Temperature Ferromagnetism in Monolayer MoS 2 via in situ iron-doping. Nature communications, 11(1), 1-8.
[4] Wang, S. Y., Ko, T. S., Huang, C. C., & Huang, Y. S. (2014). Optical and electrical properties of MoS2 and Fe-doped MoS2. Japanese Journal of Applied Physics, 53(4S), 04EH07.
[5] Loh, L., Zhang, Z., Bosman, M., & Eda, G. (2020). Substitutional doping in 2D transition metal dichalcogenides. Nano Research, 1-14.
[6] Luo, P., Zhuge, F., Zhang, Q., Chen, Y., Lv, L., Huang, Y., ... & Zhai, T. (2019). Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horizons, 4(1), 26-51.
[7] 廖健宇. (2020). 鈷鎵共摻氧化鋅室溫鐵磁性之機制研究. 成功大學物理學系學位論文, 1-97.
[8] 邱逸杰. (2020). 離子束濺鍍製成大面積二硫化鉬原子層與特性分析. 成功大學物理學系學位論文, 1-67.
[9] 姜彥彰. (2020). 晶圓尺度的單晶二硫化鎢薄膜合成及其結構和光學性質探討. 成功大學物理學系學位論文, 1-64.
[10] 黃文雄“化學分析儀器 Chemical Analysis Instrument”行政院國家科學委員會 精密儀器發展中心,民87
[11] 陳信志, & 李明知. (2004). 氮化鋁鎵薄膜表面氮化鎵圓盤層之微拉曼及微螢光研究 (Doctoral dissertation). [Online]. Available:https://hdl.handle.net/11296/9tyw2k
[12] Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010). Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 105(13), 136805.
[13] Liang, L., & Meunier, V. (2014). First-principles Raman spectra of MoS 2, WS 2 and their heterostructures. Nanoscale, 6(10), 5394-5401.
[14] Han, S. W., Kwon, H., Kim, S. K., Ryu, S., Yun, W. S., Kim, D. H., ... & Hong, S. C. (2011). Band-gap transition induced by interlayer van der Waals interaction in MoS 2. Physical Review B, 84(4), 045409.
[15] Xue, Y., Zhang, Y., Liu, Y., Liu, H., Song, J., Sophia, J., ... & Bao, Q. (2016). Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. Acs Nano, 10(1), 573-580.
[16] 杜怡君、張毓娟、翁乙壬等九人,國立台灣大學化學系,磁性基本特性及磁性材料應用。
[17] N. Kaiser, "Review of the fundamentals of thin-film growth," Appl Opt, vol. 41, no. 16, pp. 3053-60, Jun 1 2002.
[18] Kobayashi, N., & Muranaka, A. (2011). Circular dichroism and magnetic circular dichroism spectroscopy for organic chemists. Royal Society of Chemistry.
[19] 鈷碳界面之磁耦合作用. 2014. PhD Thesis. [Online]. Available: https://hdl.handle.net/11296/vzyf33
[20] 楊鴻昌. (2002). 最敏感的感測元件 SQUID 及其前瞻性應用. 物理雙月刊廿四卷五期, 第 652-665 頁.
[21] 陳昭翰 超導量子干涉元件發展的回顧與展望,大葉大學電機工程學系,台灣磁性協會,會訊51期APR(2010)
[22] "成功大學微奈米科技研究中心." [Online]. Available: http://cmnst.ncku.edu.tw/.
[23] 陳隆建 發光二極體之原理與製程(第三版)
校內:2026-02-01公開