簡易檢索 / 詳目顯示

研究生: 許書誠
Shiu, Shu-cheng
論文名稱: 以實驗溫度量測值預測雙橢管式之管鰭片蒸發器於結霜狀態下鰭片上的熱傳係數
Estimation of Heat Transfer Coefficient on the Fin of Plate Finned-Two Elliptical Tubes Evaporator under Frosting Condition with Experimental Temperature Data
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 94
中文關鍵詞: 熱傳係數結霜橢圓管逆算法管鰭片蒸發器
外文關鍵詞: frosted, heat transfer coefficient, finned-two elliptical tubes, elliptical tubes evaporator, inverse scheme
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究內容為探討在自然和強迫對流下橢圓管之鰭片間距對板鰭管式蒸發器之鰭片於結霜狀態下之熱傳係數的影響。論文內容包含數值及實驗分析兩部分,在實驗中擷取不同量測位置之鰭片溫度,然後配合反算法預估熱傳遞係數與環境條件的關係。
      
      本研究運用混合拉氏轉換法(Laplacetransform technique)和有限差分法(Finite- differencemethod)之數值逆算法來解析二維逆向熱傳導問題以預測鰭片於結霜狀態下之熱傳係數。在進行逆算法的過程中,將以最小平方法(Least-squaresscheme)來修正預估值,直至於量測點之計算溫度與其所對應點之量測溫度之差甚小為止。一般而言,熱傳係數之預測值的精度對量測溫度的誤差極為敏感,本文也會探討量測誤差對預測值的影響。

      本實驗將以自行設計的橢圓管式之管鰭片蒸發器配合相關實驗設備,以量取於結霜狀態下之鰭片溫度與管壁溫度。根據這些數據,再配合數值逆算法來估算鰭片之結霜熱傳係數。

      The purpose of the thesis is to investigate the effects of the fin spacing on the frosted heat transfer coefficient of the plate fin inside plate finned-tube evaporator with two-tube elliptical tube under natural and force convection. The thesis includes the numerical and experimental parts. The present inverse scheme in conjunction with the fin temperature measurement at various measurement locations is applied to predict the frosted heat transfer coefficient on the plate fin.
      
      The hybrid numerical method involving the Laplace transform technique and the finite-difference method is applied to solve the 2-D inverse heat conduction problem in order to predict the frosted heat transfer coefficient on the fin. The least-squares scheme is applied to minimize the sum of the squares of the deviations between the calculated and measured temperatures in order to correct the estimated values. In general, slight inaccuracies of the interior measured temperatures can affect the accuracy of the estimated results for most of the previous inverse scheme. Thus the effect of the measurement error on the estimation of the frosted heat transfer coefficient will be investigated in the present analysis.
     
      A plate finned-tube evaporator is set up in conjunction with its relative experimental equipments for measuring the fin temperature. The frosted heat transfer coefficient can be predicted by using the present inverse scheme in conjunction with the fin temperature measurements.

    摘要………………………………………………………………………I 英文摘要…………………………………………………………………II 目錄………………………………………………………………………III 表目錄……………………………………………………………………V 圖目錄……………………………………………………………………VII 符號說明…………………………………………………………………XI 第一章 緒論 ……………………………………………………………1 1-1 前言…………………………………………………………………1 1-2 研究背景……………………………………………………………2 1-3 研究目的……………………………………………………………4 1-4 研究重點與架構……………………………………………………5 第二章 理論分析與數值模擬 …………………………………………8 2-1 簡介…………………………………………………………………8 2-2 數學模式的建立……………………………………………………8 2-3 直接熱傳導問題……………………………………………………10 2-4 逆向熱傳導問題……………………………………………………13 2-5 溫度量測誤差的影響………………………………………………17 2-6 結果與討論…………………………………………………………17 第三章 實驗操作與數據分析 …………………………………………35 3-1 簡介…………………………………………………………………35 3-2 實驗設備……………………………………………………………35 3-3 實驗步驟……………………………………………………………37 3-4 實驗之操作條件……………………………………………………40 3-5 實驗結果與數據分析………………………………………………40 第四章 綜合結論與建議 ………………………………………………86 4-1 數值模擬結果………………………………………………………86 4-2 實驗結果……………………………………………………………86 4-3 綜合結論……………………………………………………………86 4-4 未來發展方向與建議………………………………………………88 參考文獻…………………………………………………………………93 附錄一……………………………………………………………………94

    1.F. E. M. Saboya and E. M. Sparrow, “Transfer characteristic of two-row plate fin and tube heat exchanger configuration,” Int.J. Heat Mass Transer, Vol.9 , pp.41-49,1976.

    2.J. Stasiulevicius and A. Skrinska, “Heat Transfer of Finned Tube Bundles in Crossflow”, Hemispher Publishing, New York, 1988.

    3.W. M. Kays and A. L. London, “Compact Heat Exchangers”, McGrawHill, 2nd ed,New York, 1964.

    4.S. Kakac, A. E. Bergles and F. Mayinger, “Thermal-Hydraulic Fundamentals and Design”, Hemispher Publishing, New York, 1981.

    5.D. Q. Kern and A. D. Kraus, “Extended Surface Heat Transfer”, McGrawHill, New York, 1972.

    6.F. C. McQuistion and J. D. Paker, “Heat Ventilating and Air Conditioning”, John Wiley & Sons, New York, 2nded, 1982.

    7.T. Hosoda and H. Uzahashi, “Effect of frost on the heat transfer transfer coefficient,” Hitachi Review, Vol. 16, 1967

    8.C. T. Sanders, “The influence of frost formation and defrosting on the performance of air coolers”, Ph. D. Dissertation, Technishe. Mogeschool, Delft University, the Netherlands,1974.

    9.D. L. O’Neal and D. R. Free, “A review of frost formation in simple geometries,” ASHRAE Trans., Vol. 91(2), pp. 267-276, 1985.

    10.M. M. Padki, S. A. Sherif and R. M. Nelson, “A simple method for molding frost formation in different geometries” ASHRAE Trans., Vol. 95(2), pp. 1127-1137, 1989.

    11.D. L. O’Neal, “The effects of frost formation on the performance of a parallel plate heat exchange”r, Ph. D. Dissertation, Dept. of Mechanical Engng., Purdue University, 1983.

    12.S. N. Kondepudi and D. L. O’Neal, “The effects of frost growth on extended surface heat exchanger performance, a review,” ASHRAE Trans., Vol. 93(2), pp. 258-274, 1987.

    13.S. N. Kondepudi and D. L. O’Neal, “The effect of frost growth on the performance of louvered fined tube heat exchangers,” Int. J. Refrig., Vol. 12, pp. 151-158, 1989.

    14.S. N. Kondepudi and D. L. O’Neal, “The performance of triangular spine fines under frosting conditions,” J. Heat Recovery Systems, Vol. 7(1), pp. 1-5, 1987.

    15.S. N. Kondepudi and D. L. O’Neal, “Performance of finned tube heat exchangers under frosting condition : I. Simulation model,” Rev. Int. Froid., Vol.16, pp. 175-180, 1993.

    16.H. Barrow, “A note on the frosting of heat pump evaporator surfaces,” J. Heat Recovery System, Vol. 5, 1985.

    17.K. S. Lee, W. S. Kim and T. H. Lee, “A one-dimensional model for frost formation on a cold flat surface,” Int. J. Heat Mass Transfer, Vol. 40, pp. 4359-4365, 1997.

    18.A. D. Kraus, “Sixty-five years of extended surface technology(1922-1987),” Appl. Mech. Rev., Vol. 41, pp. 321-364, 1988.

    19.S. P. Oskarsson, K. I. Krakow and S. Lin, “Evaporator models for operation with dry,wet and frosted finned surfaces- Part 1 and 2,” ASHRAE Trans., Vol. 96, pp. 373-392, 1990.

    20.F. C. McQuiston, “Fin efficiency with combined heat and mass transfer,” ASHRAE Trans., Vol. 93(1), 1975.

    21.F. C. Gardner, “Efficiency of extended surface,” Trans. ASME, Vol. 67, pp. 621-631, 1945.

    22.F. E. M. Saboya and E. M. Sparrow, “Local and average transfer coefficients fir one-row plate fin and tube heat exchanger configurations,” ASME J. Heat Transfer, Vol. 96, pp. 265-272, 1974.

    23.Vedat S. Arpaci, “Conduction Heat Transfer”, Addison-Wesley, New York, pp. 492-493, 1922.

    24.G. Honing, and U. Hirdes, “A method for the numerical inversion of Laplace transforms “. J. Comp. Appl. Math., Vol. 9, pp. 113-132,1984.

    25.S. N. Kondepudi and D. L. O’Neal, “Performance of finned tube heat exchangers under frosting condition : II. Comparison of experimental data with model,” Rev. Int. Froid., Vol.16, pp. 181-184, 1993.

    26.E. C. Rosman, P. Carajilescov, and F. E. M. Saboya, “Performancr of One- and Two-Row Tube and Plate Fin Heat Exchangers“. ASME J. Heat Transfer, Vol. 106, pp. 627-632, 1984.

    27.黃棋模,黃國峰,葉榮華和廖世平, “蒸發管結霜之研究”.Maritime Research Journal Vol.14 pp.45-61,2003

    28. A. Bejan, “Heat Transfer,” John Wiley & Sons, Inc., New York, pp. 53-62, 1993.

    29.吳國文, “利用逆算法配合實驗數據預測橢圓鰭管式熱交換器之鰭片於結霜狀態下的熱傳遞係數,” 成功大學機械工程研究所碩士論文, 2003.

    30.王益彤, “利用逆算法配合實驗數據預測單橢圓管式之管鰭片蒸發器於結霜狀態下之熱傳遞係數,” 成功大學機械工程研究所碩士論文, 2004.

    31.H.T. Chen, J.P. Song and Y.T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers,” Int. J. Heat and Mass Transfer, vol. 48, pp.2697-2707, 2005.

    32.V.S. Arpaci, S,H, Kao and A. Selamet, “Introduction to Heat Transfer,” Prentice-Hall, pp. 588, 1999.

    下載圖示 校內:立即公開
    校外:2005-08-03公開
    QR CODE