| 研究生: |
鄭建星 Jeng, Jiann-Shing |
|---|---|
| 論文名稱: |
濺鍍銅薄膜與低介電常數材料的熱反應性研究 Thermal Reactions Between Sputtered Copper Thin Film and Low Dielectric Constant Materials |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 低介電常數材料 、時間延遲 |
| 外文關鍵詞: | low dielectric constant material, RC delay |
| 相關次數: | 點閱:80 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討使用氮化鈦/鈦(TiN/Ti)與不使用TiN/Ti擴散阻障層的濺鍍銅薄膜在二氧化矽(SiO2)、含氫矽酸鹽(HSQ)、含氟二氧化矽(FSG)與含碳二氧化矽(OSG)等介電材料上的熱反應性。退火前與經過真空退火後的多層薄膜結構試片的片電阻、表面型態、相生成與縱深成份分別利用四點探針儀、掃描式電子顯微鏡、X光繞射儀與歐傑電子能譜儀分析。由於濺鍍條件的影響,所得銅薄膜可能會為平整銅薄膜(Cu),或是具有裂紋的銅薄膜(Cu(cracked))。對於Cu (Cracked)/ SiO2/<Si> (<Si>代表單晶矽基材)與Cu (Cracked)/HSQ/<Si>試片而言,片電阻值在400 ℃退火後降低,片電阻值降低主要原因是銅薄膜晶粒成長與微裂紋的消失。經過600 ℃退火後的Cu (Cracked)/HSQ/<Si> 試片會產生Cu2O相,而經過700 ℃退火後,所有的銅薄膜被氧化形成數種氧化銅相。而對於Cu (Cracked)/ SiO2/<Si>試片而言,經過700 ℃退火只有少部分的銅被氧化形成Cu2O相。而對於沒有裂紋的濺鍍銅薄膜Cu/SiO2/<Si> and Cu/HSQ/<Si>試片,經過800 ℃退火之後,並沒有任何氧化銅相的生成,所以裂紋對於銅薄膜與介電層間的熱反應性質,扮演一個相當重要的角色。對於Cu/TiN/Ti/SiO2/<Si> 與 Cu/TiN/Ti/HSQ/<Si>試片而言,當退火溫度漸增到600 ℃,片電阻值隨之降低。而後當退火溫度為700 ℃時,片電阻值增加。700 ℃退火片電阻的增加主要是因為介電層的氧跑到阻障層內。經過800 ℃退火之後,試片表面由銅薄膜與灰點所組成,且此時銅薄膜的表面產生很多微孔洞。灰點在HSQ介電層上的尺寸與數量大於在SiO2介電層上。這些在HSQ介電層上的灰點經過X光繞射分析可以發現主要是Cu3Si相。
對於Cu/FSG/<Si> and Cu/OSG/<Si>系統而言,片電阻值在經過400 ~ 700 ℃之退火後會降低,而後經過800 ℃退火後,片電阻值有些許的增加。片電阻值的降低與SiO2及HSQ系統一樣都是因為銅薄膜的晶粒成長。而800 ℃退火後片電阻值的增加主要是因為銅薄膜表面產生了破洞。經由歐傑電子縱深分析發現FSG與OSG兩系統的銅訊號有些許擴散進入FSG與OSG。OSG的縱深分析結果發現,經過700 ~ 800 ℃退火,碳原子會擴散進入銅薄膜。當在銅薄膜與FSG及OSG介電層間加入TiN/Ti阻障層,初鍍銅薄膜的Cu/TiN/Ti/FSG/<Si> 與 Cu/TiN/Ti/OSG/<Si>試片的片電阻值,會高於試片經過400 ~ 800 ℃退火的片電阻值。而經過900 ℃退火後的片電阻值較初鍍試片大幅增加。此外由歐傑電子縱深分析可以發現經過700 ~ 900 ℃退火後的Cu/TiN/Ti/FSG/<Si> 與 Cu/TiN/Ti/OSG/<Si>試片,阻障層的Ti會擴散越過銅薄膜到試片表面上,且介電層的O會擴散進入TiN/Ti阻障層。此時Ti累積在Cu/TiN/Ti/FSG/<Si>試片表面的程度較在Cu/TiN/Ti/OSG/<Si>試片表面的程度嚴重。
此外本研究亦針對SiO2、HSQ、FSG與OSG四種介電層的熱穩定性,以熱脫附質譜分析儀與傅立葉轉換紅外線光譜進行分析研究。實驗結果顯示氧會自HSQ與OSG介電層熱脫附出來,而且甲基分子也會自OSG介電層熱脫附出來。這個結果說明SiO2與FSG介電層的熱穩定性較HSQ與OSG介電層的熱穩定性佳。
最後本研究利用二次離子質譜儀探討銅原子對於SiO2、HSQ、FSG與OSG四種介電層的擴散,發現由於HSQ與OSG的密度較低,所以銅原子在450 ℃退火後較容易擴散進入HSQ與OSG。最後並使用基板曲率應力法,來探討經過不同次數熱循環的銅薄膜,在不同的介電層上的彈性變形與塑性變形。
Thermal reactions of sputtered Cu films on the thermally grown silicon dioxide (SiO2), spin-on hydrogen silsesquioxane (HSQ), fluorinated silicate glass. (FSG) and organosilicate glass (OSG) layers, with and without TiN/Ti diffusion barrier, were investigated. The sheet resistance, surface morphology, phase formation and compositional depth profile of the multilayer structures before and after annealing in vacuum at 400 ~ 800 ℃ were examined. Due to the difference in sputtering condition, the Cu films may be uniform (referred to “Cu”), or with microcracks (referred to “Cu (cracked)”). For Cu (Cracked)/ SiO2/<Si> and Cu (Cracked)/HSQ/<Si> samples (<Si> represents the single-crystal Si substrate), it is found that the sheet resistance values of both samples decreased after annealing at 400 ℃. The decrease of sheet resistance was in conjunction with growth of Cu grains and annihilation of microcracks of the as-deposited Cu films. Cu2O was first found in the Cu (Cracked)/HSQ/<Si> samples after annealing at 600 ℃. After annealing at 700 ℃, the whole copper layer of Cu (Cracked)/HSQ/<Si> sample reacted with oxygen to form several copper oxides. On the contrary, only a minor part of copper in Cu (Cracked)/SiO2/<Si> structure was transformed to Cu2O after annealing at 700 ℃. However, there is no apparent reaction occurred in both Cu/SiO2/<Si> and Cu/HSQ/<Si>systems even after annealing at 800 ℃. So the cracks in the Cu films play an important role in the thermal reaction between Cu and dielectrics. For samples with TiN/Ti barrier layer, the sheet resistance values of Cu/TiN/Ti/SiO2/<Si> and Cu/TiN/Ti/HSQ/<Si> decreased after annealing up to 600 °C and began to increase after annealing at 700 °C. The decrease in sheet resistance occurred also in conjunction with grain growth of the copper films, while the increase of sheet resistance was related with incorporation of oxygen into the TiN-Ti layers. After annealing at 800 °C, the surfaces of both systems consisted of Cu-color area and gray dots. Microvoids were seen on the Cu-color areas of both systems. Both microvoids and gray dots existed in greater number and larger sizes for the HSQ sample, and X-ray diffraction revealed the existence of Cu3Si phase in the 800 °C annealed HSQ sample.
For Cu/FSG/<Si> and Cu/OSG/<Si> systems, it is found that the sheet resistance values of Cu on FSG and OSG decrease after annealing at 400~700 °C and slightly increase after annealing at 800 °C. The decrease of sheet resistance occurred in conjunction with growth of Cu grains of the as-deposited Cu films (consistent with SiO2 and HSQ systems), while the increase of sheet resistance at 800 °C was accompanied with the formation of holes on Cu films (dewetting), which is more extensive on FSG than on OSG. X-ray diffraction did not show any new phase formed in both systems upon annealing. Slight Cu diffusion toward the dielectric layers after annealing at 700-800 °C was observed for both systems. In addition, carbon atoms in the OSG layer diffused into the Cu layer after annealing at 700-800 °C. When a TiN/Ti barrier layer was interposed between copper and FSG or OSG layers, the sheet resistance values of both systems after annealing at 400-800 °C are lower than that of the as-deposited samples. Nevertheless, after annealing at 900 °C, the sheet resistances of both systems become more than twice of the as-deposited values. Also, the decrease of sheet resistance values was due to the grain growth of copper films of both systems. X-ray diffraction revealed no newly formed phases after annealing. However, copper-less patches were seen on the surface of both systems after annealing at 900 °C. The patches are in irregular shape for the FSG sample, but are circular for the OSG sample. In addition, penetration of Ti atoms across the copper film and outdiffusion of oxygen from FSG and OSG to the TiN/Ti barrier layer were observed for both Cu/TiN/Ti/FSG and Cu/TiN/Ti/OSG systems after annealing at 700-900 °C. The accumulation of Ti on Cu surface is more significant for the FSG than the OSG system.
In addition, thermal stability of SiO2, HSQ, FSG and OSG dielectrics were investigated by using thermal desorption spectroscopy and Fourier transform infrared spectrometer. Both experimental results exhibit the oxygen atoms are liberated from the HSQ and OSG layer upon annealing and methyl groups in OSG have also released upon annealing. It suggests that the structures of SiO2 and FSG are more stable than that of HSQ and OSG after annealing at high temperature.
Finally, the diffusion of Cu and stress behavior of sputtered copper thin film on SiO2, HSQ, FSG and OSG layers were examining by using Secondary ion mass spectrometer depth profile analysis and curvature substrate stress method, respectively. Due to the lower density of HSQ and OSG, the Cu depth profiles indicate the Cu diffused into HSQ and OSG appreciably at 450 ℃. For the stress measurement, the changes in thermal stress of Cu thin films deposited on different dielectrics during thermal cycling were interpreted in terms of elastic and plastic deformation in the Cu thin films.
1. R. Liu, in ULSI Technology, edited by C.Y. Chang and S.M. Sze, Chap.9 (McGraw-Hill, Singapore,1996).
2. S. R. Wilson, C. J. Tracy, and J. L. Freman, Jr., Handbook of Multilevel Metallization for Integrated Circuits, Chap.1(Noyes Publications, Park Ridge, New Jersey, USA,1993).
3. 黃調元, 施敏, 微電子之發展與挑戰, 電子月刊, 6, 78 (2000).
4. L. Peters, “Low-k Dielectrics: Will Spin-On or CVD Prevail ?”, Semiconductor International, June, 108 (2000).
5. International Technology Roadmap for Semiconductor, 2002 update, Semiconductor Industry Association.
6. N.P. Hacker, “Organic and Inorganic Spin-On Polymer for Low-Dielectric-Constant Applications,” MRS Bulletin, October, 33 (1997).
7. B. Shieh, K. Saraswat, M. Deal and J. McVittie, “Air gaps lower k of interconnect dielectrics,” Solid State Technology, February, 51(1999).
8. K.-M. Chang, J.-Y. Yang and L.-W. Chen, A novel technology to form air gap for ULSI application, IEEE Electron Dev. Lett., 20, 185(1999).
9. A. K. Stamper, V. McGahay, and J. P. Hummel, "Intermetal Dielectrics--A Five Year Outlook," Proceedings of the Third International Dielectrics for ULSI Multilevel Interconnection Conference, 13(1997).
10. G. W. Ray, “Low dielectric constant materials integration challenges,” Mat. Res. Soc. Symp. Proc., 511, 199(1998).
11. H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal Oxidation of Silicon in dry oxygen: Growth-rate enhancement in the thin region I.”, J. Electrochem. Soc., 132, 2685 (1985).
12. M. Hammond, “Introduction to chemical vapor deposition,” Solid State Technology, Dec., 61 (1979).
13. R. K. Laxman, N. H. Hendricks, B. Arkles, and T. A. Tabler, “Synthesizing Low-k CVD Materials for Fab use,” Semiconductor International, November, 95 (2000).
14. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, Chap. 6(Prentice Hall, New Jersey, 2000).
15. M. J. Loboda, G. A. Toskey, “ Understanding hydrogen silsesquioxane-based dielectric film processing,” Solid State Technology, May, 99(1998).
16. M. G. Albercht and C. Blanchette, “ Materials issues with thin film hydrogen silsesquioxane low k dielectrics,” J. Electrochem. Soc., 145, 4019(1998).
17. Y. Y. Cheng, S. M. Jang, C. H. Yu, S. C. Sun and M. S. Liang, “ A high performance reliable low-k inter-metal dielectric using hydrogen silsesquioxane (HSQ),” 1999 Symposium on VLSI Technology Digest of Technical Papers, 47(1999).
18. J.-H. Zhao, I. Malik, T. Ryan, E. T. Ogawa and P.S. Ho, “Thermomechanical properties and moisture uptake characteristics of hydrogen silsesquioxane submicron films,” Applied Physics Letters, 74, 7, 944 (1999).
19. T. C. Chang, P. T. Liu, F. Y. Shih and S. M. Sze, “Effects of hydrogen on electrical and chemical properties of low-k hydrogen silsequioxane(HSQ) as intermetal dielectric for non-etch back process”, Electrochemical and Solid-State Letters, 2, 390 (1999).
20. H. Treichel, G. Ruhl, P. Ansmann, R. Wurl, Ch. Muller, and M. Dietlmeier, “Low dielectric constant materials for interlayer dielectric,” Microelectronic Engineering, 40, 1 (1998).
21.Hatanaka, Y. Mizushima, O. Hataishi, Y. Furumara, “H2O-TEOS plasma-CVD realizing dielectrics having a smooth surface,” Proc. IEEE VLSI Multilevel Interconnection Conf., 435 (1991).
22. K. Machida, H. Oikawa, “SiO2 planarization technology with biasing and electron cyclotron resonance plasma deposition for submicron interconnections,” J. Vac. Sci. Technol. B4, 818 (1986).
23.O. A. Popov, H. Waldron, “Electron cyclotron resonance plasma stream source for plasma enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A7, 914 (1989).
24.T. V. Herak, T. T. Chau, D. J. Thomson, and S. R. Mejia, “Low-temperature deposition of silicon dioxide films from electron cyclotron resonant microwave plasmas,” J. Appl. Phys., 65, 2457 (1989).
25.T. Homma, “Fluorinated SiO2 films for interlayer dielectrics in quarter-micron ULSI multiplayer interconnects,” Mat. Res. Soc. Symp. Proc., 381, 239 (1995).
26. W. S. Yoo, R. Swope, B. Sparks, D. Mordo, “Comparison of C2F6 and FASi-4 as fluorine dopant sources in plasma enhanced chemical vapor deposition fluorinated silica glass films,” J. Mat. Res.,12, 70(1997).
27. M. J. Loboda, “New solutions for intermetal dielectrics using trimethylsilane-based PECVD processes,” Microelectronic Engineering, 50, 15 (2000).
28. W. Pan, D. R. Evans, and S.–T. Hsu, “Development of PECVD low-k carbon-doped silicon oxide using SiH4 based precursor,” 197th Meeting of The Electrochemical Society, May 14-18, 2000, Toronoto, Abstract #220.
39. G. Passemard, O. Demolliens, “Low k: Damascene integration issues,” 197th Meeting of The Electrochemical Society, May 14-18, 2000, Toronoto, Abstract #228.
30. M. Oneill, A. Lukas, R. Vrtis, J. Vincent, B. Peterson, M. Bitner, “Low-k materials by design,” Semiconductor International, 93, June, (2002).
31. J. N. Bremmer, “A new class of insulating materials: Emergence of ultralow-k,” Solid State Technology, Sep., (2001).
32. L. Peter, “Solving the Integration Challenges of Low-k Dielectrics,” Semiconductor International, November, 56(1999).
33. A. S. Loke, S. S. Wong, N. A. Talwalkar, J. T. Wetzel, P. H. Townsend, T. Tanabe, R. N. Vrtis, M. P. Zussman, and D. Kumar, “Evaluation of copper penetration in low-k polymer dielectrics by bias-temperature stress,” Mat. Res. Soc. Symp. Proc., 564, 535(1998).
34. S.-Q. Wang, “Barriers Against Copper Diffusion into Silicon and Drift Through Silicon Dioxide,”MRS Bulletin, August, 30(1994).
35. A. E. Braun, “ Photoresist Stripping Faces Low-k Challenges,” Semiconductor International, october, 64(1999).
36. The National Technology Roadmap for Semiconductor, 1997 edition, Semiconductor Industry Association.
37. P. L. Rossiter, The Electrical Resistivity of Metals and Alloys, (Cambridge University Press, 1987)
38. D. D. Nolte, “Mesoscopic pointlike defects in semiconductors : Deep-level energies,” Physical Review, B58, 7994 (1998).
39. J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in silicon dioxide,” J. Electrochem. Soc., 133, 1242 (1986).
40. C. O. Rodriguez, S. Brand, and M. Jaros, “Binding to deep impurities in semiconductors,” J. Phys. C: Solid St. Phys., 13, L333 (1980).
41. G. Wang, and X. Qi, “Device level modeling of metal-insulator-semiconductor interconnects,” IEEE Trans. on electron device, 48, 1672 (2001).
42. H. H. Paradies, M. Thies, and U. Hinze, In situ absorption study of copper surface complexes, The Rigaku Journal, 13, 16 (1996).
43. C. S. Liu and L. J. Chen, “Catalytic oxidation of (001)Si in the presence of Cu3Si at room temperature,” J. Appl. Phys., 74, 3611 (1993).
44. J. M. E. Harper, A. Charai, L. Stolt, F. M. d'Heurle, and P. M. Fryer, “Room-temperature oxidation of silicon catalyzed by Cu3Si,” Appl. Phys. Lett., 56, 2519 (1990).
45. L. Stolt and M. D'Heurle “The formation of Cu3Si: Marker experiments,” Thin Solid Films, 189, 269 (1990).
46. J. D. Plummer, M. D. Deal and P. B. Griffin, Silicon VLSI Technology (New Jersey; Prentice Hall, 1996).
47. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, (New York, Oxford, 2001).
48. 張俊彥主編, 積體電路製程及設備技術手冊, (經濟部技術處發行).
49. K. H. Min, K. C. Chun and K. B. Kin, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization,” J. Vac. Sci. Technol., B 14, 3263 (1996).
50. J. S. Reid, E. Kolawa R. P. Ruiz and M. A. Nicolet, “Evaluation of amorphous (Mo, Ta, W)-Si-N diffusion barriers for <Si>/Cu metallizations,” Thin Solid Films, 236, 319 (1993).
51. C. Lee and Y. H. Shin, “Ta-Si-N as a diffusion barrier between Cu and Si,” Materials Chemistry and Physics, 57, 17 (1998).
52. B. S. Suh, Y. J. Lee, J. S. Hwang and C. O. Park, “Properties of reactively sputtered WNx as Cu diffusion barrier,” Thin Solid Films, 348, 299 (1999).
53. T. Mae, M. Nose, M. Zhou, T. Nagae and K. Shimamura, “The effects of Si addition on the structure and mechanical properties of ZrN thin films deposited by an r.f. reactive sputtering method,” Surface and Coating Technology, 142, 954 (2001).
54. G. S. Chen and S. T. Chen, “Diffusion barrier properties of single- and multilayered quasi-amorphous tantalum nitride thin films against copper penetration,” J. Appl. Phys., 87, 8473 (2000).
55. R. Nowak and C. L. Li, “Evaluation of HfN thin films considered as diffusion barriers in the Al/HfN/Si system,” Thin Solid Films, 305, 297 (1997).
56. E. Ivanov, “Evaluation of tantalum silicide sputtering target materials for amorphous Ta–Si–N diffusion barrier for Cu metallization,” Thin Solid Films, 332, 325 (1998).
57. K. Shiba, H. Wakabayashi, T. Takewaki, K. Kikuta, A. Kubo, S. Yamasaki and Y. Hayashi, “Multilevel aluminum dual-damascene interconnects for process-step reduction in 0.18 µm ULSIs,” Jpn. J. Appl. Phys., 38, 2360 (1999).
58. P. Bratin, B. Chalyt, A. Kogan, and M. Pavlov, “Control of damascene copper processes by cyclic voltammetric stripping,” Semiconductor Fabtech, 12th edition, 275(2000).
59. P. Singer, “Tantalum, copper and damanscene: The future of Interconnects,” Semiconductor International, June, 90 (1998).
60. P. Singer, “Dual-Damascene challenges dielectric etch,” Semiconductor International, August, 68(1999).
61. M. A. Lester, “Controlling aluminum and titanium in CMP,” Semiconductor International, April, 18(2002).
62. Y. Li, and S. V. Babu, “Copper and Tantalum chemical mechanical planarisation some recent progress,” Semiconductor Fabtech, 13th edition, 259(2001).
63. A. S. Grove, “Mass transfer in semiconductor technology,” Ind. and Eng. Chem., 58, 48 (1966).
64. K. Malima, “Environmental requirements applicable to copper-based semiconductor deposition processes in the united kingdom, Ireland, Singapore, and Taiwan, Semiconductor Fabtech, 10th edition, 121(1998).
65. S. Cohen, M. Liehr and S. Kasi, “Mechanisms of copper chemical vapor deposition,” Appl. Phys. Lett., 60, 50 (1992).
66. H. Wolf, J. Röber, S. Riedel, R. Streiter and T. Gessner, “Process and equipment simulation of copper chemical vapor deposition using Cu(hfac)vtms,” Microelectronic Engineering, 45, 15 (1999).
67. F. A. Houle, C. R. Jones, T. Baum, C. Pico and C. A. Kovac, “Laser chemical vapor deposition of copper,” Appl. Phys. Lett., 46, 204 (1985).
68. C. R. Jones, F. A. Houle, C. A. Kovac and T. H. Baum, “Photochemical generation and deposition of copper from a gas phase precursor,” Appl. Phys. Lett., 46, 97 (1985).
69. A. Jain, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, J. D. Farr, M. F. Paffett, “Chemical vapor deposition of copper via disproportionation of hexfluoroacetylacetonato (1,5-cyclooctadiene) copper(I), (hfac)Cu(1,5-COD),” J. Mat. Res., 7, 261 (1992).
70. J. E. Parmeter, “Copper CVD Chemistry on a Reactive Substrate: Cu(hfac)2 and hfacH on Pt (111),” J. Phys. Chem., 97, 11530 (1993).
71. F. A. Houle, R. J. Wilson and T. H. Baum, “Surface processes leading to carbon contamination of photochemically deposited copper films,” J. Vac. Sci. Technol. A4, 2452 (1986).
72. C. Zeng, N.S. Borgharkar, G.L. Griffin, H. Fan, and A.W. Maverick, “Solution delivery for copper CVD using Cu(hfac)2 reduction,” MRS Symp., 514, 315(1998).
73. D. H. Kim, R. H. Wentorf, and W. N. Gill, “Film growth kinetics of chemically vapor deposited copper from Cu(HFA)2,” J. Electrochem. Soc., 140, 3267(1993).
74. W. H. Lee, Y. K. Ko, I. J. Byun, B. S. Seo, J. G. Lee, P. J. Reucroft, J. U. Lee, and J. Y. Lee, “Chemical vapor deposition of an electroplating Cu seed layer using hexafluoroacetylacetonate Cu(1,5-dimethylcyclooctadiene),” J. Vac. Sci. Technol. A, 19, 2974 (2001).
75. R. L. Van hemert, L. B. Spendlove, and R. E. Sievers, “Vapor deposition of metals by hydrogen reduction of metal chelates,” J. Electrochem. Soc., 112, 1123 (1965).
76. S. K. Reynolds, C. J. Smart, and E. F. Baran, “Chemical vapor deposition of copper from 1,5-cyclooctadiene copper(I) hexafluoroacetylacetonate,” Appl. Phys. Lett., 59, 2332 (1991).
77. Jain, K. M. Chi, T. T. Kodas, M. J. Hampden-Smith, “Chemical vapor deposition of copper from hexafluoroacetylacetonato copper(I) vinyltrimethylsilane: deposition rates, mechanism, selectivity, morphology, and resistivity as a function of temperature and pressure,” J. Electrochem. Soc., 140, 1434 (1993).
78. T. H. Baran and C. E. Larson, “Copper chemical vapor deposition from alkyne stabilized copper (I) hexafluoroacetylacetonate complexes,” J. Electrochem. Soc., 140, 154 (1993).
79. S. L. Cohen, “Mechanisms of copper chemical vapor deposition,” Appl. Phys. Lett., 60, 50 (1990).
80. A. E. Kaloyeros and M.A. Fury, “Chemical vapor deposition of copper for multilevel metallization,” MRS Bulletin, 18, 22 (1993).
81. J. A. T. Norman, D. A. Roberts, A. K. Hochberg, P. Smith, G. A. Petersen, J. E. Parmeter, C. A. Apblett and T. R. Omstead, “Chemical additives for improved copper chemical vapour deposition processing,” Thin Solid Films, 262, 46 (1995).
82. A. Jain, A. V. Gelatos, T. T. Kodas, M. J. Hampden-Smith, R. Marsh and C. J. Mogab, “Selective chemical vapor deposition of copper using (hfac) copper(I) vinyltrimethylsilane in the absence and presence of water,” Thin Solid Films, 262, 52 (1995).
83. V. M. Dubin, Y. Shacham-Diamand, B. Zhao, P. K. Vasudev, C. H. Ting, “Selective and Blanket Electroless Copper Deposition for Ultralarge Scale Integration,” J. Electrochem. Soc., 144, 898 (1997).
84. A. Jain, T. T. Kodas, R. Jairath, and M. J. Hampden-Smith, “Selective and blanket copper chemical vapor deposition for ultra-large-scale integration,” J. Vac. Sci. Technol. B, 11, 2107 (1993).
85. 賴耿陽, 薄膜製作工藝學, 復漢出版社, 第四章, 民國八十三年.
86. C. Eisenmenger-Sittner, A. Bergauer, H. Bangert, and W. Bauer, “The growth dynamics of thick sputtered copper coatings under the influence of surface diffusion: A quantitative atomic force microscopy study,” J. Appl. Phys., 78, 4899 (1995).
87. J. Boohdansky, J. Roth and H. L. Bay, “An analytical formula and important parameters for low-energy ion sputtering,” J. Appl. Phys., 51, 2861 (1980).
88. H. F. Winters and J. W. Coburn, “Surface science aspects of etching reactions,” Surf. Sci. Rep., 14, 162 (1992).
89. B. Chapman, Glow Discharge Process, Chap. 6 (John Wiley and Sons, New York, 1980).
90. M. Ohring, The Material Science of Thin Films, Chap. 5 (Academic Press, New Jersey, 1992).
91. J. Pelleg, L. Z. Zevin and S. Lungo, “Reactive-sputter-deposited TiN films on glass substrates,” Thin Solid Films, 197, 117 (1997).
92. C. V. Thompson, “Structure evolution during processing of polycrystalline films,” Annu. Rev. Mater. Sci. 30, 159 (2000).
93. Y. Shacham-Diamand, V. D. and M. Angyal, “Electroless copper deposition for ULSI,” Thin Solid Films, 262, 93 (1995).
94. E. M. El-Giar, R. A. Said, G. E. Bridges and D. J. Thomson, “Localized electrochemical deposition of copper microstructures,” J. Electrochem. Soc., 147, 586 (2000).
95. A. E. Braun, “Copper electroplating enter mainstream processing,” Semiconductor International, April, 1(1999).
96. M. Rousseau, S. Co, “Advanced plating chemistry for 65 nm copper interconnects,” Semiconductor International, May, 1(2003).
97. M. D. Vaudin, “Crystallographic texture in ceramics and metals,” Journal of research of the national institute of standards and technology, 106, 1063(2001).
98. W-M. Kuschke, A. Kretschmann, R-M. Keller, R.P. Vinci, C. Kaufmann, E. Arzt, ”Textures of thin copper films” J. Mater. Res., 13, 2962 (1998).
99. S. P. Murarka and S. W. Hymes, “Copper metallization for ULSI and beyond,” Critical Reviews in Solid State and Materials Science, 20, 87 (1995).
100. M. Y. Kwak, D. H. Shin, T. W. Kang and K. N. Kim, “Characteristics of TiN barrier layer against Cu diffusion,” Thin Solid Films, 339, 290 (1999).
101. M. Moriyama, T. Kawazoe, M. Tanaka, M. Murakami, “Correlation between microstructure and barrier properties of TiN thin films used Cu interconnects,” Thin Solid Films, 416, 136 (2002).
102. S. Riedel, S. E. Schulz, J. Baumann, M. Rennau, T. Gessner, “Influence of different treatment techniques on the barrier properties of MOCVD TiN against copper diffusion,” Microelectronic Engineering, 55, 213(2001).
103. K. D. Vargheese, R. G. Mohan, T. V. Balasubramanian, “Preparation and characterization of TiN films by electron cyclotron resonance (ECR) sputtering for diffusion barrier applications,” Materials Science and Engineering, B13, 242 (2001).
104. K. Chen, Y. Yu, H. Mu, E. Z. Luo, B. Sundaravel, S. P. Wong, I. H. Wilson, “Preferentially oriented and amorphous Ti, TiN and Ti/TiN diffusion barrier for Cu prepared by ion beam assisted deposition (IBAD),” Surface and Coatings Technology, 151-152, 434(2002).
105. S.-H. Kim, D.-S. Chung, K.-C. Park, K.-B. Kim and S.-H. Min, “A comparative study of film properties of chemical vapor deposited TiN films as diffusion barriers for Cu metallization,” J. Electrochem. Soc., 146, 1455 (1999).
106. C. Wenger, M. Albert, B. Adolphi, H. Heuer, J. W. Bartha, F. Schlenkrich, “Integration of high dielectric Ba0.5Sr0.5TiO3 films into amorphous TaSiN barrier layer structures,” Materials Science in Semiconductor Processing, 5, 233 (2002).
107. X. Zhao, N. P. Magtoto, M. Leavy, J. A. Kelber, , “Copper interaction with a Ta silicate surface: implications for interconnect technology,” Thin Solid Films, 415, 308 (2002).
108. J. O. Olowolafe, I. Rau, K. M. Unruh, C. P. Swann, Z. S. Jawad, “Effect of composition on thermal stability and electrical resistivity of Ta–Si–N films,” Thin Solid Films, 365, 19 (2000).
109. J. S. Reid, E. Kolawa, C. M. Garland and Marc A. Nicolet, “Amorphous (Mo, Ta, or W)–Si–N diffusion barriers for Al metallizations,” J. Appl. Phys., 79, 1109 (1996).
110. M. Y. Kwak, D. H. Shin, T. W. Kang, and K. N. Kim, “Characteristics of WN diffusion barrier layer for Cu metallization,” Phys. Stat. Sol., 174, R5 (1999).
111. T. Migita, R. Kamei, T. Tanaka, K. Kawabata, “Effect of dc bias on the compositional ratio of WNX thin films prepared by rf-dc coupled magnetron sputtering,” Applied Surface Science, 169-170, 362 (2001).
112. O. J. Bchir, S. W. Johnston, A. C. Cuadra, T. J. Anderson, C. G. Ortiz, , “MOCVD of tungsten nitride (WNx) thin films from the imido complex Cl4(CH3CN)W(NiPr),” Journal of Crystal Growth, 249, 262 (2003).
113. M.Y. Kwak, D.H. Shin, T.W. Kang, K.N. Kim, “Characteristics of WN Diffusion Barrier Layer for Copper Metallization,” Phys. Stat. Sol., 175, R5 (1999).
114. H. L. Zhang, D. Z. Wang, N. K. Huang, “The effect of nitrogen ion implantation on tungsten surfaces,” Appl. Surf. Sci., 150, 34 (1999).
115. S. Smith, W.-M. Li, K.-E. Elers, K. Pfeifer, , “Physical and electrical characterization of ALCVD TiN and WNxCy used as a copper diffusion barrier in dual damascene backend structures,” Microelectronic Engineering, 64, 247 (2002).
116. Y. T. Kim, C. W. Lee, S.-K. Min, “New method to improve the adhesion strength of tungsten thin film on silicon by W2N glue layer,” Appl. Phys. Lett., 61, 537 (1992).
117. C. W. Lee, Y. T. Kim, C. Lee, J. Y. Lee, S. –K. Min, Y. W. Park, “Performance of the plasma deposited tungsten nitride barrier to prevent the interdiffusion of Al and Si,” J. Vac. Sci. Technol., B 12, 69 (1994).
118. Y. T. Kim, S. –K. Min, C. K. Kim, “Plasma-enhanced chemical vapor deposition of low-resistive tungsten thin films,’ Appl. Phys. Lett., 58, 837 (1991).
119. R. Ecke, S. E. Schulz, M. Hecker, T. Gessner, “Development of PECVD WNx ultrathin film as barrier layer for copper metallization,” Microelectronic Engineering, 64, 261(2002).
120. T. Laurila, K. Zeng and J. K. Kivilahti, “Failure mechanism of Ta diffusion barrier between Cu and Si,” J. Appl. Phys., 88, 3377 (2000).
121.K. M. Latt, Y. K. Lee, T. P. Osipowicz, “Interfacial reactions and failure mechanism of Cu/Ta/SiO2/Si multilayer structure in thermal annealing,” Materials Science and Engineering., B94, 111 (2002).
122. G.W. Book, K. Pfeifer, S. Smith, “Barrier integrity testing of Ta using triangular voltage sweep and a novel CV-BTS test structure,” Microelectronic Engineering, 64, 255 (2002).
123. K. Holloway, P. Fryer, C. Cabral, J. Harper, P. Bailey, and K. Kelleher, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions,” J. Appl. Phys., 71, 5433 (1992).
124. W. L. Yang, W.-F. Wu, D.-G. Liu, C.-C. Wu, K. L. Ou, , “Barrier capability of TaNx films deposited by different nitrogen flow rate against Cu diffusion in Cu/TaNx/n+–p junction diodes,” Solid-State Electronics, 45, 149 (2001).
125. K. M. Latt, K. Lee, T. Osipowicz, Y. K. Lee, “Properties of electroplated copper thin film and its interfacial reactions in the EPCu/IMPCu/IMPTaN/SiO2/Si multilayer structure,” Materials Science and Engineering, B83, 1 (2001).
126. Y.-L. Kuo, J.-J. Huang, S.-T. Lin, C. Lee, W.-H. Lee, , “Diffusion barrier properties of sputtered TaNx between Cu and Si using TaN as the target,” Materials Chemistry and Physics, 80, 690 (2003).
127. H. Kawasaki, K. Doi, and J. Namba, “Tantalum nitride thin film synthesized by pulsed Nd-YAG laser deposition method,” MRS Symp., 617, J3.22.1(2000).
128. K.-M. Yin, L. Chang, F.-R. Chen, J.-J. Kai, , “The effect of oxygen on the interfacial reactions of Cu/TaNx/Si multilayers,” Materials Chemistry and Physics, 71, 1 (2001).
129. K. M. Latt, Y. K. Lee, S. Li, T. Osipowicz, H.L. Seng, , “The impact of layer thickness of IMP-deposited tantalum nitride films on integrity of Cu/TaN/SiO2/Si multilayer structure,” Materials Science and Engineering, B84, 217 (2001).
130. K.-H. Min, K.-C. Chun, and K.-B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization,” J. Vac. Sci. Technol. B 14, 3263 (1996).
131. M. B. Lee, M. Kawasaki, M. Yoshimoto, M. Kumagai, and Koinuma, “Epitaxial Growth of Highly Crystalline and Conductive Nitride Films by Pulsed Laser Deposition,” Jpn. J. Appl. Phys., 33, 6308 (1994).
132. M. B. Takeyama, T. Itoi, E. Aoyagi, A. Noya, “High performance of thin nano-crystalline ZrN diffusion barriers in Cu/Si contact systems,” Applied Surface Science, 190, 450(2002).
133. S. Inoue, K. Tominaga, R. P. Howson and K. Kusaka, “Effects of nitrogen pressure and ion flux on the properties of direct current reactive magnetron sputtered Zr–N films,” J. Vac. Sci. Technol. A 13, 2808 (1995).
134. L. Pichon, A. Straboni, T. Giraadeau and M. Drouet, “Nitrogen and oxygen transport and reactions during plasma nitridation of zirconium thin films,” J. Appl. Phys., 87, 925 (2000).
135. L. E. Toth, Transition metal carbides and nitrides (New York; Academic press, 1971).
136. H. Jiang, K. Tao and H. Li, “Structure of TiNx(0 < x < 1.1) films prepared by ion beam-assisted deposition,” Thin Solid Films, 258, 51 (1995).
137. J. F. Shackelf, CRC Materials Science and Engineering Handbook (CRC press, California, 2000).
138. M. Wittmer, “Properties and microelectronic applications of thin films of refractory metal nitrides,” J. Vac. Sci. Technol., A 3, 1797 (1985).
139. S. M. Rossnegal and D. Mikalsen, “Collimated magnetron sputter deposition,” J. Vac. Sci. Technol., A 9, 261 (1991).
140. S. R. Burgess, H. Donohue, K. Buchanan, N. Rimmer and P. Rich, “Evaluation of Ta and TaN-based Cu diffusion barriers deposited by Advanced Hi-Fill (AHF) sputtering onto blanket wafers and high aspect ratio structures,” Microelectronic Engineering, 64, 307(2002).
141. A. A. Mayo, S. Hamaguchi, J. H. Joo, and S. M. Rossnagel, “Across-wafer nonuniformity of long throw sputter deposition,” J. Vac. Sci. Technol., B 15, 1788 (1997).
142. K. Tao, D. Mao, and J. Hopwood, “Ionized physical vapor deposition of titanium nitride: A global plasma model,” J. Appl. Phys., 91, 4040 (2002).
143. A. Kohlhase, M. Maendl, and W. Palmer, “Performance and failure mechanisms of TiN diffusion barrier layers in submicron devices,” J. Appl. Phys., 65, 2464 (1989).
144. N. Yokoyama, K. Hinode, and Y. Homma, “LPCVD Titanium Nitride for ULSIs,” J. Electrochem. Soc., 138, 190 (1991).
145. M. J. Buiting, A. F. Otterloo, and A.H. Montree, “The Kinetics of LPCVD of Titanium Nitride from Titanium Tetrachloride and Ammonia,” J. Electrochem. Soc., 138, 500 (1991).
146. K. Glejbol, N. H. Pryds, A. R. Tholen, “Nucleation of CVD TiN on tungsten,,” J. Mater. Res., 8, 2239 (1993).
147. D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley and Sons, Arizona ,1998).
148. 楊永盛, 楊慶宗, 電子顯微鏡原理與應用 (文京圖書).
149. 王騰儀, 半導體材料分析設備Auger能譜分析儀在微粒檢測上之應用, 電子月刊, 6, 150 (2000).
150. 莊琇惠, 化學分析電子儀之原理與應用, 電子月刊, 7, 128 (2001).
151. 蘇炎坤, “二次離子質譜儀之分析與應用,” 科儀新知, 9, 9(1988).
152. 吳至寧, 二次離子質譜儀分析技術在半導體製程上的應用, 電子月刊, 9, 138 (2000).
153. 汪建民, 材料分析 (中國材料科學學會).
154. Ruth E. Whan, ASM Handbook-Materials Characterization Vol. 10 (ASM, 1986).
155. 潘扶民, “四極質譜儀與表面科學,” 科儀新知, 13, 33(1991).
156. J. Eymery, F. Rieutord, F. Fournel, D. Buttard, H. Moriceau, “ X-ray reflectivity of silicon on insulator wafers,” Material Science in Semiconductor Processing, 4, 31 (2001).
157. A. van der Lee, “Grazing incident speclar reflectivity: theory, experiment, and applications,” Solid State Science, 2, 257 (2000).
158. S. H. Bang, J. H. Cho, H. K. Kim, and H. J. Cho, “X-ray reflectivity studies of highly crystalline CeO2 films on Al2O3,” Applied Surface Science, 174, 257 (2001).
159. I. Kojima, B. Li and T. Fujimoto, “High resolution thickness and interface roughness characterization in multilayer thin films by grazing incidence X-ray,” Thin Solid Films, 355-356, 385 (1999).
160. T. C. Huang, R. Gilles, and G. Will, “Thin-film thickness and density determination from x-ray reflectivity data using a conventional power diffractometer,” Thin Solid Films, 230, 99 (1993).
161. S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett., 69, 3944 (1996).
162. P. Hirsch, Electron Microscopy of thin Crystals (ROBERT E. KRIEGER, New York, 1977).
163. A. K. Shinha, H. J. Levinstein, and T. E. Smith, “Thermal stresses and cracking resistance of dielectric films (SiN, Si3N4, and SiO2) on Si substrate,” J. Appl. Phys., 49, 2423 (1978).
164. R-M. Keller, S. P. Baker, and E. Arzt, “Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size and passivation ,” J. Mater. Res., 13, 1307 (1998).
165. R-M. Keller, S. P. Baker, and E. Arzt, “Stress–temperature behavior of unpassivated thin copper films,” Acta mater., 47, 415 (1999).
166. J. F. Jongste, O. B. Loopstra, G. C. A. M. Janssen, and S. Radelaar, “Elastic constants and thermal expansion coefficient of metastable C49 TiSi2,” J. Appl. Phys., 73, 2816 (1993).
167. J. A. Thornton, “High rate thick film growth,” Ann. Rev. Mater. Sci., 7, 239 (1977).
168. E. G. Gerstner, P. B. Lukins, and D. R. Mckenzie, “Substrate bias effects on the structural and electronic properties of tetrahedral amorphous carbon,” Physical Review B, 54, 504(1996).
169. J. p. Chang, and H. H. Sawin, “Kinetic study of low energy ion-enhanced polysilicon etching using Cl, Cl2, and Cl + beam scattering,” J. Vac. Sci. Technol., A 15, 610 (1997).
170. I. Barin, Thermochemical Data of pure substances, 3rd ed., p. 620, 622, 1505, VCH, New York (1995).
171. J.-H. Zhao, I. Malik, T. Ryan, E. T. Ogawa, and P. S. Ho, “Thermomechanical properties and moisture uptake characteristics of hydrogen silsesquioxane submicron films,” Appl. Phys. Lett., 74, 944 (1999).
172. M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of a-SiOx:H thin films deposited from hydrogen silsesquioxane resins,” J. Electrochem. Soc., 145, 2861 (1998).
173. D. Brandon and W. D. Kaplan, Microstructural Characterization of Materials, (Wiley, England, 1999).
174. S.-K. Rha, W.-J. Lee, S.-Y. Lee, D.-W. Kim, C.-O. Park and S.-S. Chun, “Interdiffusions and reactions in Cu/TiN/Ti/Si and Cu/TiN/Ti/SiO2/Si multilayer structures,” J. Mater. Res. 12, 3367 (1997).
175. S.-Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar, K.-B. Kim, “Reactively sputtered TiN as a diffusion barrier between Cu and Si,” J. Appl. Phys. 68,5176 (1990).
176. J. S. Chen and J. L.Wang, “Diffusion Barrier Properties of Sputtered TiB2 Between Cu and Si,” J. Electrochem. Soc. 147, 1940 (2000).
177. S. W. Russell, J. W. Strane, J. W. Mayer, and S.-Q. Wang, “Reaction kinetics in the Ti/SiO2 system and Ti thickness dependence on reaction rate,” J. Appl. Phys. 76, 257 (1994).
178. Y. Zeng, S. W. Russell, A. J. McKerrow, P. Chen, and T. L. Alford, “Thin film interaction between low-k dielectric hydrogen silsesquioxane (HSQ) and Ti barrier layer,” Thin Solid Films 360, 283 (2000).
179. Y. Zeng, S. W. Russell, A. J. McKerrow, L. Chen, and T. L. Alford, “Effectiveness of Ti, TiN, Ta, TaN, and W2N as barriers for the integration of low-k dielectric hydrogen silsesquioxane,” J. Vac. Sci. Technol. B 18, 221 (2000).
180. A. Mallikarjunan, S. P. Murarka, C. Steinbruchel, A. Kumar, and H. Bakhru, “Electrical behavior of Cu thin fluorinated PECVD oxide MIS capacitors,” J. Electrochem. Soc. 147, 3502 (2000).
181. S.-K. Koh, W.-K. Choi, K.-H. Kim, and H.-J. Jung, “Cu films deposited by a partially ionized beam (PIB),” Thin Solid Films, 287, 266 (1996).
182. K. H. Kim, H. G. Jang, S. Han, H. J. Jung, S. K. Koh, and D. J. Choi, “Cu films by partially ionized beam deposition for ULSI metallisation,” J. Mater. Res., 13, 1158 (1998).
183. F. Delamare and G. E. Rhead., “Increase in the surface self-diffusion of copper due to the chemisorption of halogens,” Surf. Sci., 28, 267(1971).
184. S. E. Kim and C. Steinbruchel, “Metal/fluorinated-dielectric interactions in microelectronic interconnections: Rapid diffusion of fluorine through aluminum,” Appl. Phys. Lett., 75, 1902 (1999).
185. M. J. Shapiro, T. Matsuda, S. V. Nguyen, C. Parks, and C. Dziobkowski, “Fluorine diffusion from fluorosilicate glass,” J. Electrochem. Soc., 143, L156 (1996).
186. A. Labiadh, F. Braud, J. Torres, J. Palleau, G. Passemard, F. Pires, J. C. Dupuy, C. Dubois, and B. Gautier, “Study of the thermal stability at the Cu/SiOF interface,” Microelectronic Engineering, 33, 369 (1997).
187. S. E. Kim , and C. Steinbruchel, “The interaction of metals and barrier layers with fluorinated silicon oxide,” Sol. State Electron. 43, 1019 (1999).
188. Z.-C. Wu, Z.-W. Shiung, C.-C Chiang, W.-H. Wu, M.-C. Chen, S.-M. Jeng, W. Chang, P.-F. Chou, S.-M. Jang, C.-H. Yu, and M.-S. Liang, “Physical and electrical characteristics of F- and C-doped low dielectric constant chemical vapor deposited oxides,” J. Electrochem. Soc., 148, F115 (2001).
189. Z.-C. Wu, Z.-W. Shiung, C.-C Chiang, W.-H. Wu, M.-C. Chen, S.-M. Jeng, W. Chang, P.-F. Chou, S.-M. Jang, C.-H. Yu, and M.-S. Liang, “Physical and electrical characteristics of methylsilane- and trimethylsilane-doped low dielectric constant chemical vapor deposited oxides,” J. Electrochem. Soc., 148, F127 (2001).
190. S. W. Russell, S. A. Rafalski, R. L. Spreitzer, J. Li, M. Moinpour, F. Moghadam, T. L. Alford, “Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions,” Thin Solid Films, 262, 154 (1995).
191. K. T. Miller and F. F. Lange, “The instability of polycrystalline thin films: Experiment and theory,” J. Mater. Res., 5, 151(1990).
192. J. J. Rha and J. K. Park, “Stability of the grain configurations of thin films—A model for agglomeration,” J. Appl. Phys., 82, 1608 (1997).
193. J. J. Rha and J. K. Park, “Agglomeration of TiSi2 thin film on (100) Si substrates,” J. Appl. Phys., 82, 2933 (1997).
194. D. S. Campbell, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).
195. J. R. Dann, “Forces involved in the adhesion process,” Journal of Colloid and Interface Science, 32, 302 (1970).
196. D. K. Owens, E. I. du Pont, “Estimation of the surface free energy of polymers,” Journal of Applied Polymer Science, 13, 1741 (1969).
197. E. Lugscheider, K. Bobzin, and M. Moller, “The effect of PVD layer constitution on surface free energy,” Thin Solid Films, 355-366, 367(1999).
198. M. Mandl and H. Hoffmann, “Diffusion barrier properties of Ti/TiN investigated by transmission electron microscopy,” J. Appl. Phys., 68, 2127 (1990).
199. L. He, and S. Hasegawa, “A study of plasma-deposited amorphous SiO2 films using infrared absorption techniques,” Thin Solid Films, 384, 195 (2001)
200. J. Lee, and M. T. Kim, “Characterization of amorphous SiC:H films deposited from hexamethyldisilazane,” Thin Solid Films, 303, 173 (1997).
201. W. A. Nevin, H. Yamagishi and Y. Tawada, “Wide band-gap hydrogenated amorphous silicon carbide prepared from a liquid aromatic carbon source,” J. Appl. Phys., 72, 4989 (1992).
202. G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films,” Phys. Rev. B 28, 3225 (1983).
203. G. G. Stoney, Proc. Roy. Soc. London A82, 172 (1909).
204. P. A. Flinn, “Measurement and interpretation of stress in copper films as a function of thermal history,” J. Mater. Res., 6, 1498 (1991).
205. M. D. Thouless, J. Gupta, and J. M. E. Harper, “Stress development and relaxation in copper films during thermal cycling,” J. Mater. Res., 8, 1845 (1993).
206. Paul A. Flinn, Donald S. Garder, “Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history,” IEEE Transactions on Electron Devices, ED-34, 689 (1987).
207. M. F. Ashby and H. J. Frost, “The Kinetics of inelastic deformation above 0 K, in Constitutive Equations in Plasticity”, A. S. Argon, Ed. Cambridge, MA: MIT Press, 1975, p.117-147.
208. R. P. Vinci, E. M. Zielinski, J. C. Bravman, “Thermal strain and stress in copper thin films,” Thin Solid Films, 262, 142 (1995).