簡易檢索 / 詳目顯示

研究生: 鄧氏翠玲
Dang, Thi Thuy Linh
論文名稱: 探討氧化鈷奈米粒子於氧化鋅奈米柱上對光化學分解水之研究
Cobalt (II) oxide Nanoparticles on ZnO Nanorods with Enhanced Photoelectrochemical Water Splitting Performance
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 69
中文關鍵詞: 鈷(II)奈米粒子ZnO奈米棒水分解電化學系統替代能源
外文關鍵詞: Cobalt (II) oxide nanoparticles, ZnO nanorods, water splitting, phoelectrochemical system, sustainable alternative energy
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 本研究,在氧化鋅奈米柱以電沉積成長於銦錫氧化物玻璃上,並在氧化鋅奈米柱上,製備的氧化鈷(II)奈米顆粒作為光電化學(PEC)系統中的光陽極,將水分解成氫和氧。 透過在氧化鋅奈米柱表面成長氧化鈷奈米粒子,光電化學器件中的半導體光陽極提高了太陽光吸收光譜和光電化學性能。 與未披覆氧化鈷之氧化鋅氧化鋅奈米柱光陽極的光化學水分解效率相比,太陽水分解效率提高了約2.6倍。 在這裡我們報告低成本和簡單的方法來定制PEC太陽能水分解池中的高性能光陽極,同時也報告了其可持續替代能源研究的發展和應用。

    Cobalt (II) oxide nanoparticles fabricated on ZnO nanorods/ITO glass substrate act as photoanode in photoelectrochemical (PEC) system to split water into hydrogen and oxygen. CoO nanoparticals were formed on the surface of ZnO nanorods due to thermal decomposition of cobalt acetate tetrahydrate precursor under Argon gas at 300oC in 2 hours. The optimize condition is approximately 300 µl precursor per 1 cm2 of ZnO nanorods/ ITO substrate.
    XRD and SEM were used to characterize the nanostructured CoO and ZnO. Pure phase CoO and hexagonal wurtzite structure ZnO were synthesized indicated by the XRD results. SEM analysis showed the morphology evolution of CoO upon addition of various concentration of cobalt acetate tetrahydrate precursor.
    Uv-vis measurement indicated the extension of solar light spectrum absorption from ultraviolet region to 400-550 nm wavelengths of visible light region. The efficiency of photoelectron -chemical water splitting is enhanced approximately 2.6 times compared to the photochemical water splitting efficiency of bare ZnO nanorods/ITO glass photoanode calculated from current density vs potential (J-V curve measurement). SEM, TEM, EDS, XPS, PL measurement, cyclic voltammetry (CV curve) were also used to characterize the morphology, crystalline structure, chemical composition, recombination and electrochemical properties of CoO nanoparticles on the surface of ZnO nanorods.
    Here we report low cost and simple method to tailor high performance photoanode in PEC solar water splitting cell but also its the development and application for sustainable alternative energy studies.

    摘要 I ABSTRACT II ACKNOWLEDGEMENTS III List of Tables VII List of Figures VIII CHAPTER I - INTRODUCTION 1 1.1.Objective of the study 1 1.2.Background of the study 1 1.3.Research motivation 3 CHAPTER II - LITERATURE REVIEW 4 2.1. Photoelectrochemical reaction 4 2.2. Photoelectrochemical solar water splitting 7 2.2.1. Photocatalysis water splitting 8 2.2.2. Photocatalytic Materials Designing Strategies 10 2.3. Challenges of photoelectrochemical solar to hydrogen devices 14 2.4. Back ground of Zinc oxide nanorods 15 2.4.1.Synthesis of zinc oxide nanorods 17 2.4.2.Photocatalytic properties of zinc oxide nanorods 19 2.4.3.Photocatalytic water oxidation on Zinc oxide 22 2.4.4.Modifications of ZnO for enhanced photocatalytic water oxidation activity 23 2.5.Cobalt (II) oxide nanoparticles 24 2.5.1. Background of cobalt (II) oxide nanoparticles 24 2.5.2.Structure of cobalt(II) oxide 24 2.5.3. Synthesis and characterization of cobalt (II) oxide nanoparticles 25 CHAPTER III – EXPERIMENTAL SECTION 30 3.1.Experimental materials 30 3.2.The experimental processes and equipment 31 3.2.1.Synthesis of ZnO nanorods on ITO glass from electrodeposition system 32 3.2.2.Coating cobalt (II) oxide particles on Zinc oxide nanorods /ITO 34 3.3.Preparation of solar hydrogen generation devices 35 3.4.Measurements and characterization 36 3.4.1.Field emission scanning electron microscope (FE-SEM) and Energy-dispersive X-ray spectrometer (EDS) 36 3.4.2.X-ray diffraction (XRD) 38 3.4.3.Transmission electron microscopy (TEM) 38 3.4.4.Ultraviolet-visible absorption (UV-vis) spectrometer (Perkin Elmer precisely- Lambda 950 UV/VIS Spectrometer) 38 3.4.5.X-Ray photoelectron spectroscopy (XPS) measurement 39 3.4.6.Photoluminescence (PL) measurement 40 3.4.7. Cyclic voltammetry (CV) measurement 41 3.4.8. Photoelectrochemical (PEC) measurement (J-V curve measurement) 42 CHAPTER IV - RESULTS AND DISCUSSION 43 4.1. Fabrication of photoanode in PEC cell 43 4.1.1. Synthesis of ZnO nanorods on ITO glass substrate samples 43 4.1.2. Synthesis of cobalt (II) oxide nanoparticles coated on ZnO nanorods on ITO glass samples … 44 4.2. Morphology characterization 45 4.2.1. Morphology ZnO nanorods on ITO glass 45 4.2.2. Morphology of cobalt (II) oxide coated on ZnO nanorods on ITO glass 47 4.3. The crystalline structure of cobalt (II) oxide nanoparticles coated on ZnO nanorod on ITO glass 49 4.3.1. X-ray diffraction pattern 49 4.3.2. Transmission electron microscoppy (TEM) observation 50 4.4. Chemical characterization 51 4.4.1. Energy-dispersive X-ray spectrometer 51 4.4.2. X-ray photoelectron spectroscopy (XPS) 52 4.5. Optical characterization 53 4.5.1. Absorption spectrum 53 4.5.2. Band gap estimation using UV-VIS spectrometer 54 4.5.3. Photoluminescence measurement (PL) 56 4.6. Electrochemical properties: cyclic voltammetry measurement 57 4.7. Efficiency of photoelectrochemical water splitting 58 CHAPTER V – CONCLUSION 61 5.1. Absorption, band gap, photoluminescence, electrochemical measurements 61 5.2. The Efficiency of photoelectrochemical water splitting measurement 61 REFERENCES 62

    [1]. Fujishima A and Honda K, Photolysis-decomposition of water at the surface of an irradiated semiconductor, Nature, 238, 1972, 37.
    [2]. Kung P Y, Huang L W, Shen T W, Wang W L, Su Y S and Lin I M, App. Phys. Lett, 108, 2015, 0231141.
    [3]. Ty J T D and Yanagi H, Electrochemical deposition of zinc oxide nanorods for hybrid solar cells, Jpn. J. Appl. Phys, 54, 2015, 04DK051.
    [4]. Ke C R, Guo J G, Su Y S and Ting J M, The effect of silver nanoparticles/graphenecoupled TiO2 beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production, Nanotechnology, 27, 2016, 4354051.
    [5]. Chen X, Shen S, Guo L, Mao S S, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev, 110, 2010, 6503.
    [6]. Choudhary S, Upadhyay S, Kumar P, Singh N, Satsangi V R, Shrivastav R, Dass S, Nanostructured bilayered thin films in photoelectrochemical water splitting: A review, Int. J. Hydrogen Energy, 37, 2012, 18713.
    [7]. Zou X, Fan H, Tian Y and Yan S, Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity, CrystEngComm, 16, 2014, 1149.
    [8]. Nozik A J, Physical Chemistry of Semiconductor-Liquid Interfaces, J. Phys. Chem, 100, 1996, 13061.
    [9]. Sun J, Zhong D K, Gamelin D R, Composite photoanodes for photoelectrochemical solar water splitting, Energy Environ. Sci, 3, 2010, 1252.
    [10]. Zhang Y Y, Ram M K, Stefanakos E K, and Goswami D Y, Synthesis, Characterization and Applications of ZnO Nanowires, Journal of Nanomaterials, 2012, 2012, 6245201.
    [11]. Hamid S B A, Teh S J and Lai C W, Photocatalytic Water Oxidation on ZnO: A Review, Catalysts, 7, 2017, 1.
    [12]. Roger I, Shipman M A and Symes M D, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting, Nature Reviews Chemistry, 1, 2017, 1.
    [13]. Hisatomi T, Kubota J, and Domen K, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev, 43, 2014, 7520.
    [14]. Anpo M, Utilization of TiO2 photocatalysts in green chemistry, Pure Appl. Chem, 72, 2000, 1265.
    [15]. Adhikari S, Sarkar D, and Madras G, High efficient WO3 –ZnO mixed oxides for photocatalysis, RSC Adv, 5, 2015, 11895.
    [16]. Lai F I, Yang J F, and Kuo S Y, Efficiency Enhancement of Dye-Sensitized Solar Cells Performance with ZnO Nanorods Grown by Low-Temperature Hydrothermal Reaction, Materials (Basel), 8, 2015, 8860.
    [17]. Lang D, Cheng F and Xiang Q, Enhancement of photocatalytic H2 productionactivity of CdS nanorods by cobalt-based cocatalyst modification, Catal. Sci. Technol, 6, 2016, 6207.
    [18]. Marschall R, Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity, Adv. Funct. Mater, 24, 2014, 2421.
    [19]. Kudo A, and Miseki Y, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38, 2009, 253.
    [20]. Jafari T, Moharreri E, Amin A, Miao R, Song W, and Suib S, Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances, Molecules, 21, 2016, 900.
    [21]. Rajesh K M, Studies on Photocatalysis by Nano Titania Modified with Non-Metals, 011, 2011, 151.
    [22]. S.T. Kochuveedu, Photocatalytic and Photoelectrochemical Water Splitting on TiO2 via Photosensitization, Journal of Materials, 2016, 2016, 1.
    [23]. Wheeler D, Wang G, Ling Y, Li Y, and Zhang J Z, "Nanostructured hematite:synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties, Energy Environ. Sci. 5, 2012, 6682.
    [24]. Willkomm J, Orchard K L, Reynal A, Pastor E, Durrant J R and Reisner E, Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production, Chem. Soc. Rev, 45, 2016, 9.
    [25]. Zhu J, and Zäch M, Nanostructured materials for photocatalytic hydrogen production, Curr. Opin. Colloid Interface Sci, 14, 2009, 260.
    [26]. Modak B, and Ghosh S K, An Efficient Strategy for Controlled Band Gap Engineering of KTaO3, J. Phys. Chem. C, 120, 2016, 6920.
    [27]. Ji M, Cai J, Ma Y, and Qi L, Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 8, 2016, 3651.
    [28]. Wu W, Hao R, Liu F, Su X, and Hou Y, Single-crystalline α-Fe2O3 nanostructures: Controlled synthesis and high-index plane-enhanced photodegradation by visible light, J. Mater. Chem. A, 1, 2013, 6888.
    [29]. Zhu J, and Zäch M, Nanostructured materials for photocatalytic hydrogen production, Curr. Opin. Colloid Interface Sci, 14, 2009, 260.
    [30]. Wu J, Huang Y, Ye W, and Li Y, CO2 Reduction: From the Electrochemical to Photochemical Approach, Adv. Sci, 4, 2017, 1700194.
    [31]. Yuan Y P, Ruan L W, Barber J, Loo S C J and Xue C, Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion, Energy Environ. Sci, 7, 2014, 3934.
    [32]. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, and Wang X, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem. Soc. Rev, 43, 2014, 5234.
    [33]. Mehraj O, Pirzada B M, Mir N A, Khan M Z, and Sabir S, "A highly efficient visiblelight-driven novel p-n junction Fe2O3/BiOI photocatalyst: Surface decoration of BiOI nanosheets with Fe2O3 nanoparticles, Appl. Surf. Sci, 387, 2016, 642.
    [34]. Sathre R, Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ.Sci, 7, 2014, 3264.
    [35]. Symes M D and Cronin L, Decoupling hydrogen and oxygen evolution during water splitting using a protoncoupled-electron buffer. Nat. Chem, 5, 2013, 403.
    [36]. Rausch B, Symes M D and Cronin L A, Bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting. J. Am. Chem. Soc, 135, 2013, 13656.
    [37]. Rausch B, Symes M D, Chisholm, G. & Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science, 345, 2014, 1326.
    [38]. Bloor L G, Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer. J. Am. Chem. Soc, 138, 2016.
    [39]. Radzimska A K and Jesionowski T, Zinc Oxide—From Synthesis to Application: A Review, Materials, 7, 2014, 2833.
    [40]. Fu Y Q, Luo J K, Nguyen N T, Walton A J, Flewitt A J, Zu X T, Li Y, McHale G, Matthews A, Iborra E, Du H, Milne W I, Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications, Progress in Materials Science, 89, 2017, 31.
    [41]. Skompska M and Zarębska K, Electrodeposition of ZnO Nanorod Arrays on Transparent Conducting Substrates–a Review, Electromimica Acta,127, 2014, 467.
    [42]. Yi G C, Wang C and Park W, ZnO nanorods: synthesis, characterization and applications, Semicond. Sci. Technol, 20, 2005, S22.
    [43]. Zhang Y, Wang N, Gao S, He R, Miao S, Liu J, Zhu J and Zhang X, A simple method to synthesize nanowires, Chem. Mater, 14, 2002, 3564.
    [44]. Yao B D, Chan Y F and Wang N, Formation of ZnO nanostructures by a simple way of thermal evaporation, Appl. Phys. Lett, 81, 2002, 757.
    [45]. Kong Y C, Yu D P, Zhang B, Fang W and Feng S Q, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach Appl. Phys. Lett, 78, 2001, 407.
    [46]. Dai Y, Zhang Y, Li Q K and Nan C W, Synthesis and optical properties of tetrapod-like zinc oxide nanorods Chem. Phys. Lett, 358, 2002, 83.
    [47]. Lyu S C, Zhang Y, Lee C J, Ruh H and Lee H J, Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method Chem. Mater, 15, 2003, 3294.
    [48]. Heinrichsdorff F, Mao M H, Kirstaedter N, Krost A, Bimberg D, Kosogov A O and Werner P, Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition, Appl. Phys. Lett, 71, 1997, 22.
    [49]. Zhu Z, Self-organized growth of II-VI wide bandgap quantum dot structures, phys. stat. sol, 202, 1997, 827.
    [50]. Souletie P and Wessels B W, Growth kinetics of ZnO prepared by organometallic chemical vapor deposition J. Mater. Res, 3, 1988, 740.
    [51]. Park W I, Kim D H, Jung S W and Yi G C, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett, 80, 2002, 4232.
    [52]. Park W I, Yi G C, Kim M Y and Pennycook S J, ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy, Adv. Mater, 14, 2002, 1841.
    [53]. Huang M H, Wu Y Y, Feick H, Tran N, Weber E and Yang P D, Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater. 13, 2001, 113.
    [54]. Choy J H, Jang E S, Won J H, Chung J H, Jang D J and Kim Y W, Hydrothermal route to ZnO nanocoral reefs and nanofibers, Appl. Phys. Lett, 84, 2004, 287.
    [55]. Li Z Q, Xiong Y J and Xie Y, Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route, Inorg. Chem, 42, 2003, 8105.
    [56]. Wang J M and Gao L, Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and theirexcellent UV emission properties, J. Mater. Chem, 13, 2003, 2551.
    [57]. Liu B and Zeng H C, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am. Chem. Soc, 125, 2003, 4430.
    [58]. Li Z Q, Xie Y, Xiong Y J, Zhang R and He W, Reverse micelle-assisted route to control diameters of ZnO nanorods by selecting different precursors Chem. Lett, 32, 2003, 760.
    [59]. Tian Z R R, Voigt J A, Liu J, Mckenzie B and Mcdermott M J, Biomimetic arrays of oriented helical ZnO nanorods and columns J. Am. Chem. Soc. 124, 2003, 12954.
    [60]. Vayssieres L, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater, 15, 2003, 464.
    [61]. Yin M, Gu Y, Kuskovsky I L, Andelman T, Zhu Y M, Neumark G F and O’Brien S, Zinc oxide quantum rods, J. Am. Chem. Soc, 126, 2004, 6206.
    [62]. Khrypunov G, Klochko N, Volkova N, Kopach V, Lyubov V, Klepikova K, Pulse and direct current electrodeposition of zinc oxide layers for solar cells with extra thin absorbers, photovoltaic technology, 11, 2011, 2853.
    [63]. Panasiuk M R, Turko B I, Kapustianyk V B, Stanko O P, Mandryka A V, Serkiz R Y, Dubov Y H, Photo-and thermostimulated luminescence of ZnO nanowires. J. Appl. Spectrosc, 80, 2013, 240.
    [64]. Kapustianyk V, Turko B, Rudyk, V, Rudyk Y, Rudko M, Panasiuk M, Serkiz R, Effect of vacuumization on the photoluminescence and photoresponse decay of the zinc oxide nanostructures grown by different methods, Opt. Mater, 56, 2016, 71.
    [65]. Park W I, Yi G C, Bae M H and Lee H J, Fabrication and electrical characteristics of high performance ZnO nanorod field effect transistors, Appl. Phys. Lett, 85, 2004, 5052.
    [66]. Steinmiller E M P, Choi K S, Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production, Proc. Natl. Acad. Sci. USA, 106, 2009, 20633.
    [67]. Zhang C L, Shaon M F, Ning F Y, Xu S, Li Z H, Wein M, Evans D G, Duan X, Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting, Nano Energy, 12, 2015, 231.
    [68]. Tian J, Liu S, Li H, Wang L, Zhang Y W, Luo Y L, Asiri A M, Youbi A O A and Sun X, One-step preparation of ZnO nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation, RSC Adv, 2, 2012, 1318.
    [69]. Wei Y, Ke L, Kong J H, Liu H, Jiao Z H, X H, Du H and Sun X W, Enhanced photoelectrochemical watersplitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles, Nanotech, 23, 2012, 235401.
    [70]. Rahman M Y A, Umar A A, Taslim R and M.M. Salleh M M, Effect of surfactant on the physical properties of ZnO nanorods and the performance of ZnO photoelectrochemical cell, J. Exp. Nanosci, 10, 2015, 599.
    [71]. Hwa J T, Kyu C S, Won J H, Do K S and Woong P H, Photoelectrochemical water oxidation using ZnO nanorods coupled with cobalt-based catalysts. J. Electrochem. Sci. Technol, 2, 2011, 187.
    [72]. Han J, Liu Z, Guo K, Zhang W Q, Hong T T and Wang B, AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting. Appl. Catal. B, 179, 2015, 61.
    [73]. Samad N A A, Lai C W and Hamid S B A, Influence applied potential on the formation of self - organized ZnO nanorod film and its photoelectrochemical response, Int. J. Photoenergy, 2016, 2016, 1.
    [74]. Sharma V, Kumar P, Shrivastava J, Solank A, Satsangi V R, Dass S and Shrivastav R,Vertically aligned nanocrystalline Cu–ZnO thin films for photoelectrochemical splitting of water, J. Mater. Sci, 46, 2011, 3792.
    [75]. Kim D H, Lee S Y, Jin J E, Kima G T and Lee D J, Electrical conductivity enhancement of metallic single-walled carbon nanotube networks by CoO decoration, Phys.Chem, 16, 2014, 6980.
    [76]. Zhan X, Wang Z, Fengmei Wang, Cheng Z Z, Xu K, Wang Q, Safdar M, and He J, Efficient CoO nanowire array photocatalysts for H2 generation, Appl. Phys. Lett, 105, 2014, 153903.
    [77]. Barakat N A M, Khil M S, Shikh F A and Kim H Y, Synthesis and optical properties of two cobalt oxide (CoO and Co3O4) nanofibers produced by electrospinning process, J. Phys. Chem. C,112, 2008, 12225.
    [78]. Kannan R and Seehra M S, Percolation effects and magnetic properties of the randomly diluted fcc system CopMg1-pO, Phys Rev B Condens Matter, 35, 1987, 6847.
    [79]. Silinsky P S, Seehra, Mohindar S, Principal magnetic susceptibilities and uniaxial stress experiments in CoO, Physical Review B, 24, 1981, 419.
    [80]. Dai Q and Tang J, Optical and magnectic properties of CoO and Co nanocrystals prepared by a facile technique, Nanoscale, 5, 2013, 7512.
    [81]. Ramakrishnan V, Kim K, Park J and Beelyong Yang, Cobalt oxide nanoparticles on TiO2 nanorod/FTO as a photoanode with enhanced visible light sensitization, RSC Adv, 6, 2016, 9789.
    [82]. Lang D, ChengF and Xiang Q, Enhancement of photocatalytic H2 production activity of CdS nanorods by cobalt-based cocatalyst modification, Catal. Sci. Technol, 6, 2016, 6207.
    [83]. Steinmiller E M P and Choi K S, Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production, PNAS, 106, 2009, 20633.
    [84]. Wanjun T and Donghua C, Mechanism of Thermal Decomposition of Cobalt Acetate Tetrahydrate, Chem. Pap, 61, 2007, 329.
    [85]. Bella F, Gerbaldi C, Barolob C and Gra¨tzel M, Aqueous dye-sensitized solar cells, Chem. Soc. Rev, 44, 2015, 3431.
    [86]. Lee J, Scaning electron microscopy characterization of structural features in suspended and non-suspended graphene by customized CVD growth, Diamond and Related Materials, 54, 2015, 64.
    [87]. Sharma R, Bisen D P, Shukla U and Sharma B G, X-ray diffraction: a powerful method of characterizing nanomaterials, Science and Technology, 4, 2012, 77.
    [88]. Shaffner J T, Semiconductor Characterization and Analytical Technology, IEEE, 88, 2000, 1416.
    [89]. Fleischer J M, Organic Spectroscopy-A Capstone Experience, J. Chem. Educ, 79, 2002, 1247.
    [90]. Polakowska, White E P R G, Deeks C, Mannsberger M, Krajewska A, Strupinski, Pocinski W T and Jankowska O, X-ray Photoelectron Spectroscopy-Methodology and Aplication, Acta Physica Polonica A, 125, 2014, 1061.
    [91]. Kira M, Jahnke N F and Koch S W, Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells, Physical Review Letters, 82, 1999, 3544.

    下載圖示 校內:2023-07-31公開
    校外:2023-07-31公開
    QR CODE