| 研究生: |
江承恩 Jiang, Cheng-En |
|---|---|
| 論文名稱: |
二氧化矽填料分散於PMMA複合材料應用特性的實驗與模擬研究 Experiment and Simulation on the Application Characteristics of Silica Filler Dispersed in PMMA Composite Materials |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | PMMA複合材料 、機械性質 、微結構建模 、強化機制 、有限元素分析 |
| 外文關鍵詞: | PMMA Composites, Mechanical properties, Microstructural modeling, Strengthening mechanism, Finite element analysis |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦合金作為目前最常見的人工關節材料擁有許多優良的機械及物理特性,但其實一直存在著潛在風險,因為長時間的植入會導致鈦合金釋放出Al、V離子,V離子對人體具有毒性,鈦合金摩擦性能較差,摩擦係數高、耐磨性小且鎖死的傾向相當高;且會因人體內本身的體液而導致腐蝕,造成鈦合金表面的破壞,且因需要不斷的接觸、磨耗,長時間下來若磨損嚴重會形成一些問題,使人工關節失效。
所以為了解決上述的兩項問題,我們決定在人工關節與骨頭上披覆一層表面塗層來改善; PMMA常常做為生物高分子保護塗層,強化鈦合金表面的抗腐蝕性,因此本研究透過二氧化矽(silica)顆粒強化聚甲基丙烯酸甲酯(Poly(methyl methacrylate), PMMA)。為了避免團聚產生以及了解強化材對於材料之影響,使用溶膠-凝膠法製備 PMMA/SiO2複合材料。添加物的粒徑、含量、分佈皆會影響複合材料之機械性質,因此論文中將討論二氧化矽的添加含量與分散狀態對於整體材料之機械性能的影響,以實驗及有限元素分析作為研究,目的是更了解微結構細部的變化。
在溶膠-凝膠法中,二氧化矽顆粒透過前驅物四乙氧基矽烷(tetraethoxysilane, TEOS)生成,前驅物濃度、催化劑濃度、反應溫度與反應時間等改變皆會影響生成粒徑及分散度,我們基於田口方法的統計實驗優化程序下選出最佳的參數組合。
此外也明顯觀察到以溶膠-凝膠法製備 PMMA/SiO2 複合材料可以有效地解決添加物的團聚。二氧化矽顆粒的添加確實能提升彈性係數、抗拉強度,而應變則受顆粒粒徑、分散度、單位面積顆粒數影響。顆粒的分散度以 D0.2作為指標,利用沃羅諾伊圖(Voronoi diagram)將散佈的顆粒各自歸類為一個區域,假設分割之區域為常態分佈,計算其平均值 ±20% 所包含之面積,即為此範圍內尋獲顆粒之機率,當 D0.2數值越大代表著分散度越好。
實驗結果顯示複合材料最佳組別為TEOS濃度5 wt%、NH3(aq)為0.1 M,反應溫度及時間為60°C、180 min。藉由 OOF2 建立真實微結構的網格,將其導入有限元素分析軟體 Abaqus 中能夠了解微結構受拉伸時的變化,由應力分佈圖得知顆粒邊緣產生較小的應力,其與拉伸方向垂直,但多半也在基材與顆粒間產生較大的應力因而產生裂紋。
最後再透過實驗所得到的材料性質來預測理想中材料應該要有的性質, 因為在做模擬時需要以下的性質:彈性係數、抗拉強度、斷裂應變等,因此我們尋找出實驗所得數值之間的關係,並且預測在相近粒徑即100、150 nm 去建立理想中材料的模型,最後透過比較預測及模擬所得的性質間的誤差,即尋找材料性質與分散度之間的關係。
This study used PMMA/silica as the research material to avoid agglomeration and observe the effect of additives on the composite. The effect of silica addition on composites is discussed in conjunction with finite element analysis of the mechanical properties of the composites to better understand the changes in microstructural details. Silica particles are produced from the precursor TEOS. The agglomeration phenomenon can be improved by changing TEOS concentration, reaction temperature and reaction time, controlling PMMA particle size, changing catalyst concentration and adding coupling agent. For PMMA/silica and pure PMMA, the better the dispersion, the more Young's modulus and tensile strength can be improved, while the strain is affected by particle size, dispersion and the number of particles per unit area.
The experimental results show that the experimental parameters of 5wt%, NH3=0.1(M), TEMP:60, and TIME:180 are the optimal group. The mesh of the real microstructure was created by OOF2 and imported into the finite element analysis software SIMULIA Abaqus.
It can be seen from the stress distribution that the stress at the edge of the particles is small and perpendicular to the tensile direction, but higher stress is generated between the matrix and the particles, resulting in cracks. Compared with the experimental results, the errors in the simulated material mechanical properties are all within 15%.
Finally, the tensile properties obtained through experiments are used to predict the properties of the ideal material, and simulations are used to observe whether the structural changes and simulation results are similar to the predictions.
[1] 魏如佳, 林洋德, and 吳文祥, "某地區醫院運用管制圖尋找影響全人工膝關節手術費用之研究," 病歷資訊管理, vol. 19, no. 1, pp. 1-24, 2021.
[2] 顏儀瑾, 林佑樺, 林楷城, and 劉憶慧, "膝關節置換術後接受股神經阻斷術病人的疼痛及膝關節活動度之成效分析," 護理雜誌, vol. 69, no. 2, pp. 32-43, 2022.
[3] 黃珊, 蔣玉滿, 黃惠卿, and 郭美玲, "建置多媒體影音護理指導提升人工膝關節置換術病人自我照顧認知的正確率," 長庚護理, vol. 31, no. 4, pp. 503-516, 2020.
[4] 葉哲政. "骨科手術機器人進入醫材大廠爭搶市場階段." https://www.moea.gov.tw/mns/doit/bulletin/Bulletin.aspx?kind=4&html=1&menu_id=13553&bull_id=6270 (accessed.
[5] J. Song, B. Winkeljann, and O. Lieleg, "Biopolymer‐based coatings: promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering," Advanced Materials Interfaces, vol. 7, no. 17, p. 2000850, 2020.
[6] W. He and R. Benson, "Polymeric biomaterials," in Applied plastics engineering handbook: Elsevier, 2017, pp. 145-164.
[7] S. J. Baskey, "Analysis and Modulation of In Vitro Cell Response to Metal Ions From CoCrMo Alloys Used in Orthopaedic Applications," Université d'Ottawa/University of Ottawa, 2015.
[8] S. Pramanik, A. K. Agarwal, and K. Rai, "Chronology of total hip joint replacement and materials development," Trends in Biomaterials & Artificial Organs, vol. 19, no. 1, pp. 15-26, 2005.
[9] H. Liang, B. Shi, A. Fairchild, and T. Cale, "Applications of plasma coatings in artificial joints: an overview," Vacuum, vol. 73, no. 3-4, pp. 317-326, 2004.
[10] B. Sagbas, M. Durakbasa, M. Sagbas, and A. Koyun, "Measurement and theoretical determination of frictional temperature rise between sliding surfaces of artificial hip joints," Measurement, vol. 51, pp. 411-419, 2014.
[11] M. Niemczewska-Wójcik, "Wear mechanisms and surface topography of artificial hip joint components at the subsequent stages of tribological tests," Measurement, vol. 107, pp. 89-98, 2017.
[12] Y. Luo, L. Yang, and M. Tian, "Application of biomedical-grade titanium alloys in trabecular bone and artificial joints," in Biomaterials and Medical Tribology: Elsevier, 2013, pp. 181-216.
[13] P. Budzynski, A. Youssef, and J. Sielanko, "Surface modification of Ti–6Al–4V alloy by nitrogen ion implantation," Wear, vol. 261, no. 11-12, pp. 1271-1276, 2006.
[14] M. Norouzi and A. A. Garekani, "Corrosion protection by zirconia-based thin films deposited by a sol–gel spin coating method," Ceramics International, vol. 40, no. 2, pp. 2857-2861, 2014.
[15] J.-M. Yeh, C.-J. Weng, W.-J. Liao, and Y.-W. Mau, "Anticorrosively enhanced PMMA–SiO2 hybrid coatings prepared from the sol–gel approach with MSMA as the coupling agent," Surface and Coatings Technology, vol. 201, no. 3-4, pp. 1788-1795, 2006.
[16] S. Ghosh and S. Abanteriba, "Status of surface modification techniques for artificial hip implants," Science and technology of advanced materials, vol. 17, no. 1, pp. 715-735, 2016.
[17] T. Moro et al., "Long‐term hip simulator testing of the artificial hip joint bearing surface grafted with biocompatible phospholipid polymer," Journal of Orthopaedic Research, vol. 32, no. 3, pp. 369-376, 2014.
[18] H. A. Ching, D. Choudhury, M. J. Nine, and N. A. A. Osman, "Effects of surface coating on reducing friction and wear of orthopaedic implants," Science and technology of advanced materials, vol. 15, no. 1, p. 014402, 2014.
[19] K. Słowiński, M. Misiuk-Hojło, and M. Szaliński, "Influence of material on biocompatibility of intraocular lenses," Polimery w medycynie, vol. 37, no. 1, pp. 35-45, 2007.
[20] L. M. Shaker, A. H. Al-Hamdani, and A. A. Al-Amiery, "Vision improvement using titanium dioxide nanoparticles-doped PMMA for contact lenses," Engineering and Technology Journal, vol. 38, no. 5, pp. 681-689, 2020.
[21] A. D. Choo and S. J. Mubarak, "Longitudinal epiphyseal bracket," Journal of children's orthopaedics, vol. 7, no. 6, pp. 449-454, 2013.
[22] B. Ali Sabri, M. Satgunam, N. Abreeza, and A. N. Abed, "A review on enhancements of PMMA denture base material with different nano-fillers," Cogent Engineering, vol. 8, no. 1, p. 1875968, 2021.
[23] T. A. Van Vugt, J. J. Arts, and J. A. Geurts, "Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation," Frontiers in microbiology, vol. 10, p. 1626, 2019.
[24] S. Soleymani Eil Bakhtiari et al., "Poly (methyl methacrylate) bone cement, its rise, growth, downfall and future," Polymer International, vol. 70, no. 9, pp. 1182-1201, 2021.
[25] S. V. Harb et al., "A comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatings," Progress in Organic Coatings, vol. 140, p. 105477, 2020.
[26] A. M. Kumar, S. S. Latthe, P. Sudhagar, I. Obot, and Z. M. Gasem, "In-situ synthesis of hydrophobic SiO2-PMMA composite for surface protective coatings: experimental and quantum chemical analysis," Polymer, vol. 77, pp. 79-86, 2015.
[27] S. V. Harb, F. C. dos Santos, S. H. Pulcinelli, C. V. Santilli, K. Knowles, and P. Hammer, "Protective coatings based on PMMA–silica nanocomposites reinforced with carbon nanotubes," Carbon nanotubes–current progress of their polymer composites. 1st ed. Rijeka, Croatia: Intech, pp. 195-225, 2016.
[28] J. Alvarado‐Rivera, J. Muñoz‐Saldaña, A. Castro‐Beltrán, J. Quintero‐Armenta, J. Almaral‐Sánchez, and R. Ramírez‐Bon, "Hardness and wearing properties of SiO2–PMMA hybrid coatings reinforced with Al2O3 nanowhiskers," physica status solidi c, vol. 4, no. 11, pp. 4254-4259, 2007.
[29] G. Bergmann et al., "Hip contact forces and gait patterns from routine activities," Journal of biomechanics, vol. 34, no. 7, pp. 859-871, 2001.
[30] G. Wang, W. Huang, Q. Song, and J. Liang, "Three-dimensional finite analysis of acetabular contact pressure and contact area during normal walking," Asian journal of surgery, vol. 40, no. 6, pp. 463-469, 2017.
[31] G. Wypych, Handbook of polymers. Elsevier, 2022.
[32] R. Hedayati and S. M. F. A. Zare, "Effect of window geometry on strength of shaft part of femur bone," Periodica Polytechnica Mechanical Engineering, vol. 59, no. 2, pp. 81-87, 2015.
[33] M. Niinomi, "Mechanical properties of biomedical titanium alloys," Materials Science and Engineering: A, vol. 243, no. 1-2, pp. 231-236, 1998.
[34] L. Mattei, F. Di Puccio, B. Piccigallo, and E. Ciulli, "Lubrication and wear modelling of artificial hip joints: A review," Tribology International, vol. 44, no. 5, pp. 532-549, 2011.
[35] A. M. Smith, L. Fleming, U. Wudebwe, J. Bowen, and L. M. Grover, "Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants," journal of the mechanical behavior of biomedical materials, vol. 32, pp. 177-184, 2014.
[36] J. Bell et al., "Influence of gelatin and bovine serum lubricants on ultra-high molecular weight polyethylene wear debris generated in in vitro simulations," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 214, no. 5, pp. 513-518, 2000.
[37] S. B. Rice et al., "Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study," Metrologia, vol. 50, no. 6, p. 663, 2013.
[38] C. Igathinathane, L. Pordesimo, E. P. Columbus, W. D. Batchelor, and S. Sokhansanj, "Sieveless particle size distribution analysis of particulate materials through computer vision," Computers and Electronics in Agriculture, vol. 66, no. 2, pp. 147-158, 2009.
[39] D. F. Eckel, M. P. Balogh, P. D. Fasulo, and W. R. Rodgers, "Assessing organo‐clay dispersion in polymer nanocomposites," Journal of applied polymer science, vol. 93, no. 3, pp. 1110-1117, 2004.
[40] Z. Luo and J. H. Koo, "Quantifying the dispersion of mixture microstructures," Journal of microscopy, vol. 225, no. 2, pp. 118-125, 2007.
[41] M. Erwig, "The graph Voronoi diagram with applications," Networks: An International Journal, vol. 36, no. 3, pp. 156-163, 2000.
[42] A. Zhu, Z. Shi, A. Cai, F. Zhao, and T. Liao, "Synthesis of core–shell PMMA–SiO2 nanoparticles with suspension–dispersion–polymerization in an aqueous system and its effect on mechanical properties of PVC composites," Polymer Testing, vol. 27, no. 5, pp. 540-547, 2008.
[43] F. Yang and G. L. Nelson, "PMMA/silica nanocomposite studies: synthesis and properties," Journal of applied polymer science, vol. 91, no. 6, pp. 3844-3850, 2004.
[44] M. Morales-Acosta, C. Alvarado-Beltrán, M. Quevedo-López, B. Gnade, A. Mendoza-Galván, and R. Ramírez-Bon, "Adjustable structural, optical and dielectric characteristics in sol–gel PMMA–SiO2 hybrid films," Journal of Non-Crystalline Solids, vol. 362, pp. 124-135, 2013.
[45] Z. H. Huang and K. Y. Qiu, "The effects of interactions on the properties of acrylic polymers/silica hybrid materials prepared by the in situ sol-gel process," Polymer, vol. 38, no. 3, pp. 521-526, 1997.
[46] I. A. Rahman and V. Padavettan, "Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review," Journal of nanomaterials, vol. 2012, pp. 8-8, 2012.
[47] A. Trentin et al., "Barrier properties of high performance PMMA-silica anticorrosion coatings," Progress in Organic Coatings, vol. 138, p. 105398, 2020.
[48] I. Berktas, A. N. Ghafar, P. Fontana, A. Caputcu, Y. Menceloglu, and B. S. Okan, "Facile synthesis of graphene from waste tire/silica hybrid additives and optimization study for the fabrication of thermally enhanced cement grouts," Molecules, vol. 25, no. 4, p. 886, 2020.
[49] J. Zheng, R. Zhu, Z. He, G. Cheng, H. Wang, and K. Yao, "Synthesis and characterization of PMMA/SiO2 nanocomposites by in situ suspension polymerization," Journal of applied polymer science, vol. 115, no. 4, pp. 1975-1981, 2010.
[50] L. P. Singh et al., "Sol-Gel processing of silica nanoparticles and their applications," Advances in colloid and interface science, vol. 214, pp. 17-37, 2014.
[51] T. Satoh, M. Akitaya, M. Konno, and S. Saito, "Particle size distributions produced by hydrolysis and condensation of tetraethylorthosilicate," Journal of chemical engineering of Japan, vol. 30, no. 4, pp. 759-762, 1997.
[52] S.-H. Wu, C.-Y. Mou, and H.-P. Lin, "Synthesis of mesoporous silica nanoparticles," Chemical Society Reviews, vol. 42, no. 9, pp. 3862-3875, 2013.
[53] R. K. Iler, "The chemistry of silica, Solubility, Polymerization," Colloid and Surface Properties, and Biochemistry, vol. 866, 1979.
[54] S. K. Park, K. Do Kim, and H. T. Kim, "Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 197, no. 1-3, pp. 7-17, 2002.
[55] C. Tan, B. Bowen, and N. Epstein, "Production of monodisperse colloidal silica spheres: Effect of temperature," Journal of colloid and interface science, vol. 118, no. 1, pp. 290-293, 1987.
[56] K. D. Kim and H. T. Kim, "New process for the preparation of monodispersed, spherical silica particles," Journal of the American Ceramic Society, vol. 85, no. 5, pp. 1107-1113, 2002.
[57] Q. Zeng, A. Yu, and G. Lu, "Multiscale modeling and simulation of polymer nanocomposites," Progress in polymer science, vol. 33, no. 2, pp. 191-269, 2008.
[58] J. S. Smith, D. Bedrov, and G. D. Smith, "A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite," Composites science and technology, vol. 63, no. 11, pp. 1599-1605, 2003.
[59] H. Khare and D. Burris, "A quantitative method for measuring nanocomposite dispersion," Polymer, vol. 51, no. 3, pp. 719-729, 2010.
[60] R. K. Roy, A primer on the Taguchi method. Society of Manufacturing Engineers, 2010.
校內:2028-11-08公開