| 研究生: |
王健凱 Wang, Chien-Kai |
|---|---|
| 論文名稱: |
受ARIMA擾動影響之批次間程序鑑別與強健最佳控制 Run-to-Run Process Identification and Robust Optimal Control under ARIMA Disturbances |
| 指導教授: |
黃世宏
Hwang, Shyh-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 批次間控制 、強健最佳控制 、權衡性能指標 、程序鑑別 、確定性擾動 、隨機性擾動 |
| 外文關鍵詞: | Run-to-run control, robust optimal control, tradeoff performance index, process identification, deterministic disturbances, stochastic disturbances |
| 相關次數: | 點閱:97 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體製程中,批次間控制通常用於消除擾動對產品品質的影響,以減少其與目標值的差異。然而製程擾動的形式未知且複雜多變,必須要對其有一定的瞭解,才能透過調整擾動預測濾波器的參數設置來提供最佳的輸入配方,從而使批次間控制維持良好運作。
本論文開發了一種基於半導體製程實際輸出入數據的批次間程序鑑別方法,以獲得擾動模型參數和輸入相關的程序增益。根據該方法,可以設計出一個強健最佳批次間控制器。首先,針對確定性與隨機性擾動的常見形式進行探討,發現確定性擾動多為製程偏移或漂移,隨機性擾動往往具有ARIMA (自回歸積分移動平均)動態。因此,可以通過R語言提供的Arima()函數將擾動模型和程序增益同時鑑別為具有ARIMA誤差的回歸模型(regression with ARIMA error),並使用殘差分析來證明模型的準確性。接著,提出了一種基於ARIMA擾動模型參數和程序增益的批次間控制器設計方法。由於採用內模控制架構,批次間控制器的設計可轉化為擾動預測濾波器的設計,並選用三階濾波器來處理確定性製程漂移與複雜多變的隨機性擾動。
為了簡化三階濾波器的最佳設計,本論文開發了暫態和漸近性能指標的閉合形表示式,來分別代表確定性和隨機性擾動的影響,可以同時處理ARIMA、IMA和ARMA隨機性擾動,並以結合兩指標的權衡性能指標來評估濾波器的整體性能。最後,本論文討論批次間控制器的強健最佳設計,藉由奈氏圖建立並分類強健穩定性圖形,可以輕易地獲得滿足指定增益邊界並且最小化權衡性能指標的批次間控制器設計。
In semiconductor processing, run-to-run control is commonly used to eliminate the impact of disturbances on product quality to reduce its variations from target values. However, the forms of process disturbances are unknown and complicated, and some understanding of them is necessary to provide the best input recipe by adjusting the parameter settings of the disturbance prediction filter, so that the control can perform well.
This thesis develops a run-to-run process identification method based on the actual output and input data of a semiconductor process to obtain disturbance model parameters and an input-dependent process gain. According to this method, a robust optimal run-to-run controller can be designed. First, the common forms of deterministic and stochastic disturbances are investigated, and it is found that the deterministic disturbances are mostly shifts or drifts, and the stochastic disturbances often possess ARIMA (Autoregressive Integrated Moving Average) dynamics. Therefore, the disturbance model and process gain can be simultaneously identified as a regression model with ARIMA error through the Arima() function provided by the R language, and the accuracy of the model can be proved by residual analysis. Then, a run-to-run controller design method based on the ARIMA disturbance model parameters and process gain is proposed. Due to the internal model control structure, the design of the run-to-run controller can be translated into the design of a disturbance prediction filter.
To simplify the optimal design of the filter, closed-form expressions of transient and asymptotic performance indices are developed in this thesis to represent the effects of deterministic and stochastic disturbances, respectively, which can cope with ARIMA, IMA, and ARMA perturbations simultaneously. The overall performance of the filter is assessed by a trade-off performance index combining the two indices. Finally, this thesis discusses the robust optimal design of the run-to-run controller. By establishing and classifying robust stability diagrams based on Nyquist plots, the run-to-run controller design that satisfies specified gain margins and minimizes the trade-off performance index can be easily obtained.
[1] D. S. Boning, W. P. Moyne, T. H. Smith, J. Moyne, R. Telfeyan, A. Hurwitz, S. Shellman, J. Tayor, Run by run control of chemical-mechanical polishing, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C, Vol. 19, No. 4, pp. 307-314, 1996.
[2] J. Moyne, R. Telfeyan, A. Hunvitz, J. Taylor, A process-independent run-to-run controller and its application to chemical-mechanical planarization, Proceedings of SEMI Advanced Semiconductor Manufacturing Conference, pp. 194-200, 1995.
[3] J. Moyne, Run-to-run control in semiconductor manufacturing. In Baillieul, J., Samad, T. (eds), Encyclopedia of Systems and Control, Springer, London, pp. 1248-1254, 2015.
[4] S. Yun, M. Tom, F. Ou, G. Orkoulas, P. D. Christofides, Multivariable run-to-run control of thermal atomic layer etching of aluminum oxide thin films, Chemical Engineering Research and Design, Vol. 182, pp. 1-12, 2022.
[5] J. S. Kwon, M. Nayhouse, G. Orkoulas, D. Ni, P. D. Christofides, A method for handling batch-to-batch parametric drift using moving horizon estimation: Application to run-to-run MPC of batch crystallization, Chemical Engineering Science, Vol. 127, pp. 210-219, 2015.
[6] G. Box, G. M. Jenkins, G. Reinsel, Time Series Analysis: Forecasting & Control, Wiley, NJ, 1994.
[7] S.-T. Tseng, R.-J. Chou, S.-P. Lee, A study on a multivariate EWMA controller, Iie Transactions, Vol. 34, pp. 541-549, 2002.
[8] S.-H. Hwang, J.-C. Lin, H.-C. Wang, Robustness diagrams based optimal design of run-to-run control subject to deterministic and stochastic disturbances, Journal of Process Control, Vol. 63, pp. 47-64, 2018.
[9] 林瑞麒, J.-C. Lin, 含量測時延批次間控制之穩定性分析與強健最佳設計, 成功大學化學工程學系學位論文, 2017.
[10] 王信淳, 混合式批次間控制器設計:不確定時延及複合性能指標相關議題, 成功大學化學工程學系學位論文, 成功大學, 2014.
[11] J. Moyne, E. del Castillo, A. M. Hurwitz, Run-to-Run Control in Semiconductor Manufacturing, CRC press, 2000.
[12] B. Ai, D. S.-H. Wong, S.-S. Jang, Y. Zheng, Stability analysis of EWMA run-to-run controller subjects to stochastic metrology delay, IFAC Proceedings, Vol. 44, pp. 12354-12359, 2011.
[13] S. W. Butler, J. Stefani, Application of predictor corrector control to polysilicon gate etching, 1993 American Control Conference, pp. 3003-3007, 1993.
[14] S. W. Butler, J. A. Stefani, Supervisory run-to-run control of polysilicon gate etch using in situ ellipsometry, IEEE Transactions on Semiconductor Manufacturing, pp.193-201, 1994.
[15] E. del Castillo, Long run and transient analysis of a double EWMA feedback controller, Iie Transactions, Vol. 31, pp. 1157-1169, 1999.
[16] A. Chen, R.-S. Guo, Age-based double EWMA controller and its application to CMP processes, IEEE Transactions on Semiconductor Manufacturing, Vol. 14, pp. 11-19, 2001.
[17] E. Sachs, A. Hu, A. Ingolfsson, Run by run process control: Combining SPC and feedback control, IEEE Transactions on Semiconductor Manufacturing, Vol. 8, pp. 26-43, 1995.
[18] 王銘賢, 含未知時變增益批次間程序之類內模控制設計, 成功大學化學工程學系學位論文, 成功大學, 2011.
[19] W. Wu, C. Maa, Double EWMA controller using neural network-based tuning algorithm for MIMO non-squared systems, Journal of Process Control, Vol. 21, pp. 564-572, 2011.
[20] S. Adivikolanu, E. Zafiriou, Extensions and performance/robustness tradeoffs of the EWMA run-to-run controller by using the internal model control structure, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, pp. 56-68, 2000.
[21] A.-C. Lee, Y.-R. Pan, M.-T. Hsieh, Output disturbance observer structure applied to run-to-run control for semiconductor manufacturing, IEEE Transactions on Semiconductor Manufacturing, Vol. 24, pp. 27-43, 2011.
[22] S. Adivikolanu, E. Zafiriou, Internal model control approach to run-to-run control for semiconductor manufacturing, Proceedings of the American Control Conference, Albuquerque, New Meixco, pp. 145-149, 1997.
[23] L. Chen, M.-D. Ma, S.-S. Jang, D. S.-H. Wang, S.-Q. Wang, Performance assessment of run-to-run control in semiconductor manufacturing based on IMC framework, International Journal of Production Research, Vol. 47, 4173-4199, 2009.
[24] W. Jin, Q.-P. He, S.-J. Qin, C. A. Bode, M. A. Purdy, Recursive least squares estimation for run-to-run control with metrology delay and its application to STI etch process, IEEE Transactions on Semiconductor Manufacturing, Vol. 18, pp. 309-319, 2005.
[25] M.-F. Wu, C.-H. Lin, D. S.-H. Wong, S.-S. Jang, S.-T. Tseng, Performance analysis of EWMA controllers subject to metrology delay, IEEE Transactions on Semiconductor Manufacturing, Vol. 21, pp. 413-425, 2008.
[26] A. Ingolfsson, E. Sachs, Stability and sensitivity of an EWMA controller, Journal of Quality Technology, Vol. 25, pp. 271-287, 1993.
[27] 謝承儒, 基於穩定性圖形之強健最佳批次間控制器設計, 成功大學化學工程學系學位論文, 成功大學, 2019.
[28] R. E. Shawi, M. Maher, S. Sakr, Automated machine learning: state-of-the-art and open challenges, arXiv: Learning, 2019.
[29] C. E. Garcia, M. Morari, Internal model control. A unifying review and some new results, Industrial & Engineering Chemistry Process Design and Development, Vol. 21, pp. 308-323, 1982.
[30] M. Morari, E. Zafiriou, Robust Process Control, Prentice Hall, 1989.
[31] R. J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice(2nd ed), OTexts, 2018.
[32] K. Ogata, Discrete-Time Control Systems, Prentice Hall Englewood Cliffs, NJ, 1995.
[33] T. E. Marlin, Process Control: Designing Processes and Control Systems for Dynamic Performance, McGraw-Hill, 1995.