簡易檢索 / 詳目顯示

研究生: 薛祖欣
Hsueh, Tsu-Hsin
論文名稱: HLA-C 基因座附近可能的鼻咽癌易感受基因的定位與特性分析
Identification and Characterization of Putative Nasopharyngeal Carcinoma-susceptible gene around Human Leukocyte Antigen C Locus
指導教授: 呂政展
Lu, Cheng-Chan
蔡森田
Tsai, Sen-Tien
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 131
中文關鍵詞: 單一核甘酸多型性鼻咽癌易感受基因
外文關鍵詞: susceptible gene, HLA-C, SNP, NPC
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鼻咽癌是一種盛行於中國東南方沿海地區的鱗狀上皮細胞癌。過去有許多研究指出特殊的遺傳因子造成人們容易受到EB病毒的侵襲與周圍環境因子(飲食習慣)的影響,經由這三種主要因子的交互作用進而慢慢發展成鼻咽癌。本研究主要探討遺傳因子與鼻咽癌的關係。先前的研究中,我們已發現一個位於HLA-C基因座附近的區域,它可能與鼻咽癌的易感受性有關。這段54 kb長的區域裡包含3個已知基因,分別是OTF3、SC1以及HCR基因。本研究分為兩大部分,第一部分是分析HLA-C基因座附近的鼻咽癌易感受性區域,其內的基因變異性與鼻咽癌的易感受性的相關。藉由Direct sequencing的技術,我們找到35個序列變異存在於鼻咽癌病患與正常健康人中。在我們收集到的鼻咽癌病患與正常健康人的genomic DNA檢體,利用PCR-SSP、SSOP、PCR-RFLP以及 real-time PCR等方法鑑別上述中的11個單一核甘酸多型性(SNP)。之後使用case-control association study統計分析序列變異與鼻咽癌易感受性的相關。統計的結果指出有兩個SNPs與鼻咽癌易感受性具有統計顯著相關 (p<0.05)。分別是HCR-SNP 21 (g.11648 C>T, rs3132539) (p=0.03, OR=0.49, T carrier mode),SC1-SNP 8 (g.2335 G>A, rs2073721) (p=0.01, OR=2.19, G carrier mode)。其中SC1-SNP 8會造成胺基酸的改變 (V211M),HCR-SNP 21則不會造成胺基酸的改變 (L597L)。第二部分是候選基因SC1的功能性分析,我們首先分析SC1-SNP 8在不同物種間的保守程度,發現G對偶基因普遍存在於不同的物種。此外我們也分析了目前既有的8株鼻咽癌細胞株,發現所有的鼻咽癌細胞株都帶有G/G的基因型。這樣的結果造成我們無法直接利用鼻咽癌細胞株來進行SC1-SNP8基因多型性的功能性分析,所以我們分別構築了SC1-SNP 8不同基因型的蛋白質表現載體 (pHA-SC1 variants/IRES2-EGFP),它們將會表現SC1 V211 以及SC1 M211兩種不同蛋白質。之前的文獻指出SC1可能作為轉錄因子並且參與細胞週期後期的基因調控。藉由細胞週期的分析,我們得知在細胞週期的S phase早期,分別帶有不同SC1 (SC1V211M) 蛋白質的NIH/3T3細胞,其細胞週期的分佈會有所不同。另一方面,透過luciferase reporter gene assay,我們知道NLMP1 (EB病毒蛋白)會調控SC1基因的promoter活性。同時我們也知道SC1調控HCGIV-06基因 (一個會轉錄non-coding RNA的psuedogene) promoter活性的能力會因為V211M變異而有所不同。此外我們在共軛焦螢光顯微鏡下觀察到SC1 V211-EGFP fusion蛋白分佈在細胞核與細胞質中,SC1 M211-EGFP fusion蛋白則是主要分布在細胞質中。綜合上述結果,我們推測NLMP1可能會調控SC1表現量,而且SC1 V211M可能會改變細胞中的分佈,進而造成S phase早期的細胞週期分佈差異。除此之外,SC1 V221M 可能參與調控另一個NPC易感受基因 (HCGIV-06)。最後我們意外地發現兩個SC1基因的選擇性剪切產物,目前尚未有研究描述這兩種變異型的生物功能。鼻咽癌易感受性基因的發現將有助於我們了解鼻咽癌發生的病理機制。希望未來能將我們的結果應用在臨床診斷上,以達到早期預防的目標。

    Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma that is highly prevalent in southern Chinese, including people living in Taiwan. Numerous pieces of evidence suggest that genetic factors provide background susceptibility on which EBV infection and environmental factors may interact with each other and lead to the development of NPC. In a previous study, using HLA gene as linkage disequilibrium mapping tool and microsatellite marker for analysis, we have further identified a second NPC-susceptible locus localized within HLA-C region. Further study using microsatellite markers spanning 780 kb across the HLA-B and -C loci have narrowed down this NPC-susceptibility locus to within 54 kb. This study was divided into two major parts. Part I: To identify whether any DNA sequence variation is associated with genetic susceptibility to NPC within this 54 kb segment of putative NPC-susceptibility region. By DNA sequencing and genotyping study, we have first identified two genetic variations significantly associated with NPC among a number of single nucleotide polymorphisms (SNPs) found within this region. One is HCR-SNP 21 (g.11648 C>T, rs3132539) (p=0.03, OR=0.49, T carrier mode), another is SC1-SNP 8 (g.2335 G>A, rs2073721) (p=0.01, OR=2.19, G carrier mode). Part II: Functional study of SC1-SNP 8. SC1-SNP 8 caused an amino acid substitution at position 211 (V211M). Literature searches indicate that SC1 may play a role in cell cycle regulation. The genetic analysis of a number of NPC cell lines indicated that they all expressed G/G homozygote, and G allele is conserved in various mammalian species. To examine if this amino acid change may have any effect on the cell cycle distribution, wild type and variant expression vectors (pHA-SC1 variants/IRES2-EGFP) were transfected into mouse NIH/3T3 fibroblasts or NPC cell lines. In cell cycle distribution analysis, we found that the distinct cell cycle distribution of SC1 variants at early S phase of cell cycle. To investigate if the amino acid replacement may have any effect on the subcellular localization of protein expression, wild type and variants of SC1 and EGFP fusion protein-expressing plasmids were also constructed. The confocal microscope study revealed that SC1 V211-EGFP fusion protein was expressed in both nucleus and cytoplasm, but SC1 M211-EGFP fusion protein was predominantly expressed in cytoplasm. Moreover, the luciferase reporter assay indicated that NLMP1 may upregulate the promoter activity of SC1 gene. These data suggested that NLMP1 may regulate the SC1 gene expression at the transcription level, and the differential nucleocytoplasmic distribution of SC1 variants may cause the distinct cell cycle distribution at early S phase of cell cycle. Furthermore, we found that distinct inducing effects of SC1 variants on the promoter activity of HCGIV-06 (another putative NPC-susceptible gene). Finally, an unexpected we identified two novel alternative splice variants of SC1 from RT-PCR analysis of SC1 cDNA. The biological function of these two variants is currently unknown. The identification of NPC susceptible gene may shed light on how they may contribute to the development of NPC.

    Abstract (Chinese) I Abstract III Acknowledgement           V Content index              VI  Table index X Figure index XII Introduction 1 Hypothesis 5 Specific aims 6 Materials and methods 7 Study participants 7 Human genomic DNA extraction method 7 Direct DNA sequencing 7 Genotyping methods 8 I. Genotyping by SSOP 8 II. Genotyping by PCR-SSP 8 III. Genotyping by PCR-RFLP 9 IV. Genotyping by melting curve analysis with hybridization probe 9 V. Genotyping by TaqMan probe 10 Cell line and Cell culture 11 I. HONE-1 culture condition 11 II. NPC Tw01, NPC Tw03, and NPC Tw04 culture condition 11 III. NIH-3T3 culture condition 12 RT-PCR (Reverse transcription-PCR) 12 Plasmid construction 12 I. Construction of pMCS-Luc-enhancer like region vector 12 II. Construction of pHA-SC1/IRES2-EGFP expression vector 13 III. Construction of pHA-SC1-EGFP expression vector 14 IV. Construction of SC1 promoter vector 14 SC1 cDNA probe cloning 14 Plasmid preparation 15 Transient transfection 15 I. Calcium phosphate- mediated transfection 15 II. Lipofectamine transfection 15 Stable transfection 16 Dual-Luciferase reporter assay 16 Site-directed mutagenesis 16 Preparation of whole cell lysate 17 Immunoblot 17 Cell cycle synchronization 18 Flow cytometry for cell cycle analysis 18 Immunofluorescence analysis 19 Bioinformatic tools 19 Statistic methods 20 Results 21 Part I. Identification of Candidate SNPs in Putative Nasopharyngeal Carcinoma-susceptibility region 1. Direct sequencing of HCR gene 23 2. Direct sequencing of SC1 gene and OTF3 gene 23 3. Genotyping 24 4. HCR-SNP 10 (g.6174 A>C, rs130067) is not associated with NPC risk in the Taiwanese population 24 5. HCR-SNP 12 (g.7307 G>T, rs3094227) is not associated with NPC risk in the Taiwanese population 25 6. HCR-SNP 21 (g.11648 C>T, rs3132539) may play a protective role against NPC risk in the Taiwanese population 25 7. OTF3-SNP 1 (g.1306 G>T, rs2394882) is not associated with NPC risk in the Taiwanese population 26 8. OTF3-SNP 2 (g.1541 T>C, rs1061118) is not associated with NPC risk in the Taiwanese population 26 9. OTF3-SNP 3 (g.1815 C>T, rs13409) is not associated with NPC risk in the Taiwanese population 27 10. The association of SC1-SNP 4 (g.4513 A>T, rs1150766) and NPC risk was still unknown 28 11. SC1-SNP 5 (g.4438 C>T) variation may not exist in SC1 genomic sequence 28 12. SC1-SNP 6 (g.4288 T>C, rs3132528) is not associated with NPC risk in the Taiwanese population 28 13. SC1-SNP 7 (g.2361 C>A, rs2073722) is not associated with NPC risk in the Taiwanese population 29 14. SC1-SNP 8 (g.2335 G>A, rs2073721) is associated with NPC risk in the Taiwanese population 30 15. Summary of genotyping results 30 Part II. Functional analysis of candidate SNPs in Putative Nasopharyngeal Carcinoma-susceptibility Gene 1. The effects of ∆2 variation on enhancer-like region between SC1 and OTF3 33 2. Conservation of SC1V211 (GTG) across various species 33 3. Characterize the SC1 expression in various NPC cell lines during cell growth 34 4. The effects of NLMP1 on the promoter activity of SC1 35 5. The effects of SC1 variants on the promoter activity of HCGIV-06 36 6. Cell cycle distribution of NIH-3T3 transfected with SC1 variants expression vector 36 7. The subcellular localization of HA-SC1-EGFP variants fusion protein 37 8. Identification of two novel alternative splice variants of SC1 38 Discussion 39 The potential of HCR as NPC-susceptible gene 39 Temporarily exclude OTF3 as NPC-susceptible gene 40 The potential of SC1 as NPC-susceptible gene 40 SC1 expression in various NPC cell lines 41 The role of NLMP1 in regulation of SC1 transcription level 41 The effects of SC1 variants on promoter of HCGIV-06 42 Distinct cell cycle distribution of SC1 variants 42 The distinct nucleocytoplasmic distribution pattern of SC1 V211M 43 Novel alternative splice variants in SC1 43 Future work 44 Reference 45 Tables and Figures 52 Appendixes 108 自述 118

    Aasland, R., Gibson, T.J., and Stewart, A.F. (1995). The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends in biochemical sciences 20, 56-59.

    Asumalahti, K., Veal, C., Laitinen, T., Suomela, S., Allen, M., Elomaa, O., Moser, M., de Cid, R., Ripatti, S., Vorechovsky, I. (2002). Coding haplotype analysis supports HCR as the putative susceptibility gene for psoriasis at the MHC PSORS1 locus. Human molecular genetics 11, 589-597.

    Bahassi el, M., Penner, C.G., Robbins, S.B., Tichy, E., Feliciano, E., Yin, M., Liang, L., Deng, L., Tischfield, J.A., and Stambrook, P.J. (2007). The breast cancer susceptibility allele CHEK2*1100delC promotes genomic instability in a knock-in mouse model. Mutation research 616, 201-209.

    Bjorkman, P.J., and Parham, P. (1990). Structure, function, and diversity of class I major histocompatibility complex molecules. Annual review of biochemistry 59, 253-288.

    Chan, S.H., Day, N.E., Kunaratnam, N., Chia, K.B., and Simons, M.J. (1983). HLA and nasopharyngeal carcinoma in Chinese--a further study. International journal of cancer 32, 171-176.

    Chang, Y.T., Shiao, Y.M., Chin, P.J., Liu, Y.L., Chou, F.C., Wu, S., Lin, Y.F., Li, L.H., Lin, M.W., Liu, H.N. (2004). Genetic polymorphisms of the HCR gene and a genomic segment in close proximity to HLA-C are associated with patients with psoriasis in Taiwan. The British journal of dermatology 150, 1104-1111.

    Chen, M.L., Tsai, C.N., Liang, C.L., Shu, C.H., Huang, C.R., Sulitzeanu, D., Liu, S.T., and Chang, Y.S. (1992). Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein-Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene 7, 2131-2140.

    Chen, M.C., Feng, I.J., Lu, C.H., Chen, C.C., Lin, J.T., Huang, S.H., and Lee, K.D. (2008). The incidence and risk of second primary cancers in patients with nasopharyngeal carcinoma: a population-based study in Taiwan over a 25-year period (1979-2003). Ann Oncol 19, 1180-1186.

    Cho, E.Y., Hildesheim, A., Chen, C.J., Hsu, M.M., Chen, I.H., Mittl, B.F., Levine, P.H., Liu, M.Y., Chen, J.Y., Brinton, L.A. (2003). Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1. Cancer Epidemiol Biomarkers Prev 12, 1100-1104.

    Chung, C.T. (2004). Human leukocyte Antigen Class I region are Associated Increased Genetic Susceptibility to Nasopharyngeal Carcinoma. Master thesis

    Chung, C.T. (2008). A Non-coding RNA Transcript Associated with Genetic Susceptibility to Nasopharyngeal Carcinoma. Master thesis

    Cohen, J.I. (2000). Epstein-Barr virus infection. The New England journal of medicine 343, 481-492.

    de Kok, J.B., Wiegerinck, E.T., Giesendorf, B.A., and Swinkels, D.W. (2002). Rapid genotyping of single nucleotide polymorphisms using novel minor groove binding DNA oligonucleotides (MGB probes). Hum Mutat 19, 554-559.

    den Dunnen, J.T., and Antonarakis, S.E. (2001). Nomenclature for the description of human sequence variations. Human genetics 109, 121-124.

    Durocher, D., and Jackson, S.P. (2002). The FHA domain. FEBS letters 513, 58-66.

    Fachiroh, J., Schouten, T., Hariwiyanto, B., Paramita, D.K., Harijadi, A., Haryana, S.M., Ng, M.H., and Middeldorp, J.M. (2004). Molecular diversity of Epstein-Barr virus IgG and IgA antibody responses in nasopharyngeal carcinoma: a comparison of Indonesian, Chinese, and European subjects. The Journal of infectious diseases 190, 53-62.

    Fahraeus, R., Rymo, L., Rhim, J.S., and Klein, G. (1990). Morphological transformation of human keratinocytes expressing the LMP gene of Epstein-Barr virus. Nature 345, 447-449.

    Feng, B.J., Huang, W., Shugart, Y.Y., Lee, M.K., Zhang, F., Xia, J.C., Wang, H.Y., Huang, T.B., Jian, S.W., Huang, P. (2002). Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nature genetics 31, 395-399.

    Ghodke, Y., Joshi, K., Chopra, A., and Patwardhan, B. (2005). HLA and disease. European journal of epidemiology 20, 475-488.

    Glaser, R., Zhang, H.-Y., Yao, K., Zhu, H.-C., Wang, F.-X., Li, G.-Y., Wen, D.-S., and Li, Y.-P. (1989). Two Epithelial Tumor Cell Lines (HNE-1 and HONE-1) Latently Infected with Epstein-Barr Virus that were Derived from Nasopharyngeal Carcinomas. Proc Natl Acad Sci U S A 86, 9524-9528.

    Herrmann, K., and Niedobitek, G. (2003). Epstein-Barr virus-associated carcinomas: facts and fiction. The Journal of pathology 199, 140-145.

    Hildesheim, A., Anderson, L.M., Chen, C.J., Cheng, Y.J., Brinton, L.A., Daly, A.K., Reed, C.D., Chen, I.H., Caporaso, N.E., Hsu, M.M. (1997). CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. Journal of the National Cancer Institute 89, 1207-1212.

    Hildesheim, A., Apple, R.J., Chen, C.J., Wang, S.S., Cheng, Y.J., Klitz, W., Mack, S.J., Chen, I.H., Hsu, M.M., Yang, C.S. (2002). Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. Journal of the National Cancer Institute 94, 1780-1789.
    Hildesheim, A., and Levine, P.H. (1993). Etiology of nasopharyngeal carcinoma: a review. Epidemiologic reviews 15, 466-485.

    Hofmann, K., and Bucher, P. (1995). The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends in biochemical sciences 20, 347-349.

    Huang, T.J., Lu, C.C., Tsai, J.C., Yao, W.J., Lu, X., Lai, M.D., Liu, H.S., and Shiau, A.L. (2005). Novel autoregulatory function of hepatitis B virus M protein on surface gene expression. The Journal of biological chemistry 280, 27742-27754.

    Iguchi, N., Yang, S., Lamb, D.J., and Hecht, N.B. (2006). An SNP in protamine 1: a possible genetic cause of male infertility? Journal of medical genetics 43, 382-384.

    Jainchill, J.L., Aaronson, S.A., and Todaro, G.J. (1969). Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells. Journal of virology 4, 549-553.

    Jia, W.H., Collins, A., Zeng, Y.X., Feng, B.J., Yu, X.J., Huang, L.X., Feng, Q.S., Huang, P., Yao, M.H., and Shugart, Y.Y. (2005). Complex segregation analysis of nasopharyngeal carcinoma in Guangdong, China: evidence for a multifactorial mode of inheritance (complex segregation analysis of NPC in China). Eur J Hum Genet 13, 248-252.

    Jordan, M., Schallhorn, A., and Wurm, F.M. (1996). Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic acids research 24, 596-601.

    Kondo, S., Wakisaka, N., Schell, M.J., Horikawa, T., Sheen, T.S., Sato, H., Furukawa, M., Pagano, J.S., and Yoshizaki, T. (2005). Epstein-Barr virus latent membrane protein 1 induces the matrix metalloproteinase-1 promoter via an Ets binding site formed by a single nucleotide polymorphism: enhanced susceptibility to nasopharyngeal carcinoma. International journal of cancer 115, 368-376.

    Ku, D.H., Chang, C.D., Koniecki, J., Cannizzaro, L.A., Boghosian-Sell, L., Alder, H., and Baserga, R. (1991). A new growth-regulated complementary DNA with the sequence of a putative trans-activating factor. Cell Growth Differ 2, 179-186.

    Li, Z., Wang, C., Jiao, X., Katiyar, S., Casimiro, M.C., Prendergast, G.C., Powell, M.J., and Pestell, R.G. (2008). Alternate cyclin D1 mRNA splicing modulates p27KIP1 binding and cell migration. The Journal of biological chemistry 283, 7007-7015.

    Liebowitz, D. (1994). Nasopharyngeal carcinoma: the Epstein-Barr virus association. Seminars in oncology 21, 376-381.

    Lin, C.T., Chan, W.Y., Chen, W., Huang, H.M., Wu, H.C., Hsu, M.M., Chuang, S.M., and Wang, C.C. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Laboratory investigation; a journal of technical methods and pathology 68, 716-727
    Lin, C.T., Wong, C.I., Chan, W.Y., Tzung, K.W., Ho, J.K., Hsu, M.M., and Chuang, S.M. (1990). Establishment and characterization of two nasopharyngeal carcinoma cell lines. Laboratory investigation; a journal of technical methods and pathology 62, 713-724.

    Lin, T.M., Chen, K.P., Lin, C.C., Hsu, M.M., Tu, S.M., Chiang, T.C., Jung, P.F., and Hirayama, T. (1973). Retrospective study on nasopharyngeal carcinoma. Journal of the National Cancer Institute 51, 1403-1408.

    Liu, X.Q., Zhou, Y., Zhang, L.J., Xu, H., Chen, H.K., Pan, Z.G., and Zeng, Y.X. (2004). Transcriptional gene expression profile of human nasopharynx. International journal of molecular medicine 14, 409-420.

    Livak, K.J. (1999). Allelic discrimination using fluorogenic probes and the 5' nuclease assay. Genet Anal 14, 143-149.

    Looijenga, L.H., Stoop, H., de Leeuw, H.P., de Gouveia Brazao, C.A., Gillis, A.J., van Roozendaal, K.E., van Zoelen, E.J., Weber, R.F., Wolffenbuttel, K.P., van Dekken, H. (2003). POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer research 63, 2244-2250.

    Lu, C.C., Chen, J.C., Jin, Y.T., Yang, H.B., Chan, S.H., and Tsai, S.T. (2003). Genetic susceptibility to nasopharyngeal carcinoma within the HLA-A locus in Taiwanese. International journal of cancer 103, 745-751.

    Lu, C.C., Chen, J.C., Tsai, S.T., Jin, Y.T., Tsai, J.C., Chan, S.H., and Su, I.J. (2005a). Nasopharyngeal carcinoma-susceptibility locus is localized to a 132 kb segment containing HLA-A using high-resolution microsatellite mapping. International journal of cancer 115, 742-746.

    Lu, C.C., Sheu, B.S., Chen, T.W., Yang, H.B., Hung, K.H., Kao, A.W., Chuang, C.H., and Wu, J.J. (2005b). Host TNF-alpha-1031 and -863 promoter single nucleotide polymorphisms determine the risk of benign ulceration after H. pylori infection. The American journal of gastroenterology 100, 1274-1282.

    Lu, S.J., Day, N.E., Degos, L., Lepage, V., Wang, P.C., Chan, S.H., Simons, M., McKnight, B., Easton, D., Zeng, Y. (1990). Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 346, 470-471.

    Luna, L., Rolseth, V., Hildrestrand, G.A., Otterlei, M., Dantzer, F., Bjoras, M., and Seeberg, E. (2005). Dynamic relocalization of hOGG1 during the cell cycle is disrupted in cells harbouring the hOGG1-Cys326 polymorphic variant. Nucleic acids research 33, 1813-1824.

    Ma, R.Y., Tong, T.H., Cheung, A.M., Tsang, A.C., Leung, W.Y., and Yao, K.M. (2005). Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. Journal of cell science 118, 795-806.

    Mei, Y.P., Zhou, J.M., Wang, Y., Huang, H., Deng, R., Feng, G.K., Zeng, Y.X., and Zhu, X.F. (2007). Silencing of LMP1 induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells. Cell cycle 6, 1379-1385.

    Miller, W.E., Cheshire, J.L., Baldwin, A.S., Jr., and Raab-Traub, N. (1998). The NPC derived C15 LMP1 protein confers enhanced activation of NF-kappa B and induction of the EGFR in epithelial cells. Oncogene 16, 1869-1877.

    Mitchell, P.J., and Tjian, R. (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.

    Nanjundan, M., Zhang, F., Schmandt, R., Smith-McCune, K., and Mills, G.B. (2007). Identification of a novel splice variant of AML1b in ovarian cancer patients conferring loss of wild-type tumor suppressive functions. Oncogene 26, 2574-2584.

    Nazar-Stewart, V., Vaughan, T.L., Burt, R.D., Chen, C., Berwick, M., and Swanson, G.M. (1999). Glutathione S-transferase M1 and susceptibility to nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 8, 547-551.

    Neve, B., Fernandez-Zapico, M.E., Ashkenazi-Katalan, V., Dina, C., Hamid, Y.H., Joly, E., Vaillant, E., Benmezroua, Y., Durand, E., Bakaher, N. (2005). Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A 102, 4807-4812.

    Noguchi, K., Fukazawa, H., Murakami, Y., and Uehara, Y. (2004). Nucleolar Nek11 is a novel target of Nek2A in G1/S-arrested cells. The Journal of biological chemistry 279, 32716-32727.

    Okayama, H., Curiel, D.T., Brantly, M.L., Holmes, M.D., and Crystal, R.G. (1989). Rapid, nonradioactive detection of mutations in the human genome by allele-specific amplification. The Journal of laboratory and clinical medicine 114, 105-113.

    Old, L.J., Boyse, E.A., Oettgen, H.F., Harven, E.D., Geering, G., Williamson, B., and Clifford, P. (1966). Precipitating Antibody in Human Serum to an Antigen Present in Cultured Burkitt's Lymphoma Cells. Proc Natl Acad Sci U S A 56, 1699-1704.

    Palko, L., Bass, H.W., Beyrouthy, M.J., and Hurt, M.M. (2004). The Yin Yang-1 (YY1) protein undergoes a DNA-replication-associated switch in localization from the cytoplasm to the nucleus at the onset of S phase. Journal of cell science 117, 465-476.

    Parkin, D.M., Whelan, S.L., Ferlay J, Raymond L, and J, Y. (1997). Cancer incidence in five continents. Volume VII. IARC scientific publications, i-xxxiv, 1-1240.

    Pont-Kingdon, G., and Lyon, E. (2005). Direct molecular haplotyping by melting curve analysis of hybridization probes: beta 2-adrenergic receptor haplotypes as an example. Nucleic acids research 33, e89.

    Reinders, J., Rozemuller, E.H., van der Weide, P., Oka, A., Slootweg, P.J., Inoko, H., and Tilanus, M.G. (2007). Genes in the HLA region indicative for head and neck squamous cell carcinoma. Molecular immunology 44, 848-855.

    Savas, S., Ahmad, M.F., Shariff, M., Kim, D.Y., and Ozcelik, H. (2005). Candidate nsSNPs that can affect the functions and interactions of cell cycle proteins. Proteins 58, 697-705.

    Savas, S., and Ozcelik, H. (2005). Phosphorylation states of cell cycle and DNA repair proteins can be altered by the nsSNPs. BMC cancer 5, 107.

    Savas, S., Shariff, M., Taylor, I.W., and Ozcelik, H. (2007). Human non-synonymous single nucleotide polymorphisms can influence ubiquitin-mediated protein degradation. Omics 11, 200-208.

    Sengupta, S., den Boon, J.A., Chen, I.H., Newton, M.A., Dahl, D.B., Chen, M., Cheng, Y.J., Westra, W.H., Chen, C.J., Hildesheim, A. (2006). Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer research 66, 7999-8006.

    Shiina, T., Tamiya, G., Oka, A., Takishima, N., Yamagata, T., Kikkawa, E., Iwata, K., Tomizawa, M., Okuaki, N., Kuwano, Y. (1999). Molecular dynamics of MHC genesis unraveled by sequence analysis of the 1,796,938-bp HLA class I region. Proc Natl Acad Sci U S A 96, 13282-13287.

    Simons, M.J., Wee, G.B., Day, N.E., Morris, P.J., Shanmugaratnam, K., and De-The, G.B. (1974). Immunogenetic aspects of nasopharyngeal carcinoma: I. Differences in HL-A antigen profiles between patients and control groups. International journal of cancer 13, 122-134.

    Spano, J.P., Busson, P., Atlan, D., Bourhis, J., Pignon, J.P., Esteban, C., and Armand, J.P. (2003). Nasopharyngeal carcinomas: an update. Eur J Cancer 39, 2121-2135.

    Tao, Y., Song, X., Deng, X., Xie, D., Lee, L.M., Liu, Y., Li, W., Li, L., Deng, L., Wu, Q. (2005). Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1. Experimental cell research 303, 240-251.

    Tao, Y., Song, X., Tan, Y., Lin, X., Zhao, Y., Zeng, L., Tang, M., Li, W., Wu, Q., and Cao, Y. (2004a). Nuclear translocation of EGF receptor regulated by Epstein-Barr virus encoded latent membrane protein 1. Science in China 47, 258-267.

    Tao, Y.G., Tan, Y.N., Liu, Y.P., Song, X., Zeng, L., Gu, H.H., Tang, M., Li, W., Yi, W., and Cao, Y. (2004b). Epstein-Barr virus latent membrane protein 1 modulates epidermal growth factor receptor promoter activity in a nuclear factor kappa B-dependent manner. Cellular signalling 16, 781-790.

    Teraoka, Y., Naruse, T.K., Oka, A., Matsuzawa, Y., Shiina, T., Iizuka, M., Iwashita, K., Ozawa, A., and Inoko, H. (2000). Genetic polymorphisms in the cell growth regulated gene, SC1 telomeric of the HLA-C gene and lack of association of psoriasis vulgaris. Tissue antigens 55, 206-211.

    Thorsby, E. (1997). Invited anniversary review: HLA associated diseases. Hum Immunol 53, 1-11.

    Tiala, I., Suomela, S., Huuhtanen, J., Wakkinen, J., Holtta-Vuori, M., Kainu, K., Ranta, S., Turpeinen, U., Hamalainen, E., Jiao, H. (2007). The CCHCR1 (HCR) gene is relevant for skin steroidogenesis and downregulated in cultured psoriatic keratinocytes. Journal of molecular medicine 85, 589-601.

    Tiala, I., Wakkinen, J., Suomela, S., Puolakkainen, P., Tammi, R., Forsberg, S., Rollman, O., Kainu, K., Rozell, B., Kere, J. (2008). The PSORS1 locus gene CCHCR1 affects keratinocyte proliferation in transgenic mice. Human molecular genetics 17, 1043-1051.

    Walker, K.K., and Levine, A.J. (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci U S A 93, 15335-15340.

    Wu, S.B., Hwang, S.J., Chang, A.S., Hsieh, T., Hsu, M.M., Hsieh, R.P., and Chen, C.J. (1989). Human leukocyte antigen (HLA) frequency among patients with nasopharyngeal carcinoma in Taiwan. Anticancer research 9, 1649-1653.

    Wu, W., Baxter, J.E., Wattam, S.L., Hayward, D.G., Fardilha, M., Knebel, A., Ford, E.M., da Cruz e Silva, E.F., and Fry, A.M. (2007). Alternative splicing controls nuclear translocation of the cell cycle-regulated Nek2 kinase. The Journal of biological chemistry 282, 26431-26440.

    Xiong, W., Zeng, Z.Y., Xia, J.H., Xia, K., Shen, S.R., Li, X.L., Hu, D.X., Tan, C., Xiang, J.J., Zhou, J. (2004). A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer research 64, 1972-1974.

    Yu, M.C., Ho, J.H., Lai, S.H., and Henderson, B.E. (1986). Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong Kong. Cancer research 46, 956-961.

    Yu, M.C., and Yuan, J.M. (2002). Epidemiology of nasopharyngeal carcinoma. Seminars in cancer biology 12, 421-429.

    Zheng, H., Li, L.L., Hu, D.S., Deng, X.Y., and Cao, Y. (2007). Role of Epstein-Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cellular & molecular immunology 4, 185-196.

    下載圖示 校內:2013-08-27公開
    校外:2013-08-27公開
    QR CODE