簡易檢索 / 詳目顯示

研究生: 王嘉蔚
Wang, Chia-Wei
論文名稱: 自蛋白質交互作用網路找尋基因功能模組
BIOMODULAR: AN INTEGRATED SYSTEM FOR FUNCTIONAL MODULE DISCOVERY FROM PROTEIN-PROTEIN INTERACTION NETWORKS
指導教授: 蔣榮先
Chiang, Jung-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 75
中文關鍵詞: 蛋白質交互作用網路基因功能模組
外文關鍵詞: functional modules, protein-protein interactions
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   長久以來,系統生物學研究的終極目標在於理解生物體內部機制的運作,以獲得所需的重要資訊並建構模型工具。功能模組的辨識,其中包含建立分子網路,被認為是了解生物系統中彼此關係及交互作用的基礎。現今的學者嘗試從蛋白質交互作用網路找出功能模組,並以不同的視覺化呈現相關的反應路徑、細胞功能及細胞反應之資訊。目前不論是針對不同功能模組間的關係或是單一模組內間的關係都必須經由人力介入始可完成,使得研究人員與生物學家無法方便且有效地分析並判斷所偵測出來的功能模組是否有意義。所以在本篇論文中我們提供了一個具有互動性的整合系統找尋並視覺化呈現經由分析蛋白質交互作用網路所得到的功能模組。藉由此系統,研究人員可輕易地觀察基因間的相互關係;同時,系統的視覺化呈現可協助他們對所發現到的功能模組做更深入的研究。功能模組與生物反應路徑或基因本體論分類的關聯,描述了ㄧ群基因或蛋白質作用後完成的細胞功能,此外,系統所自動產生的功能模組圖表達了細胞中基因或蛋白質反應時所出現過的路徑、彼此的交互作用關係、在細胞裡的位置、具有的功能以及參與的反應,以呈現基因或蛋白質在細胞中作用的概觀結果。整體而言,本論文開發一個能自動找出基因功能模組,幫助使用者有效率地進行分析並找出有用知識的系統。

     Assimilating the intrinsic workings of biological mechanism to derive prerequisite knowledge and modelling tools has long been an ultimate goal in systems biology. Identification of functional modules, which constitute the building blocks of molecular networks, serves as the cornerstone for the understanding of the relationships and interactions between various parts of a biological system. Researches to date have attempted to uncover modules from protein interaction networks and correlated them with pathways and cellular functions or processes through different visualisations. The current depictions of the relationships of inter- and intra-modules, however, are done manually and the cellular interactions among genes or proteins are not being captured in a single clear global snapshot. All these have impeded the medical researchers or biologists’ ability to efficiently analyse and comprehend the detected functional modules. In this research, we endeavour to provide an interactive and integrated system to discover and visualise functional modules identified from protein-protein interaction networks. With our proposed system, researchers can gain valuable biological insights into the inter-relations of their genes of interests for further analysis via discovered functional modules and the unique visualisations. The association of modules to biological pathways or Gene Ontology classifications delineates the impacts a group of genes or proteins may have in performing cellular functions. At the same time, the auto-generated interactive module group diagram, elucidating genes or proteins’ travelling paths, interacting partners, interaction sites, functional roles and involved biological processes all at once, presents globally the inner workings within a cell. Overall, we have developed an automated functional module discovery application that allows efficient analysis and knowledge discovery.

    ABSTRACT 1 LIST OF TABLES 3 LIST OF FIGURES 4 ACKNOWLEDGEMENTS 5 CHAPTER PAGE 1 INTRODUCTION 6-7 1.1 Motivation 6 1.2 Method Overview 7 2 LITERATURE REVIEW 8-20 2.1 Protein-Protein Interaction Networks 9-12 2.1.1 Characterising Protein-Protein Interaction Networks 10 2.1.2 Identifying Protein-Protein Interactions 11 2.1.3 Obtaining Interaction Data 11 2.2 Functional Module Discovery 12-14 2.2.1 Related Research 13 2.2.2 Methods In Identifying Functional Modules 14 2.3 Analysis Through Visualisation 14-20 2.3.1 Visualising Protein-Protein Interaction Networks 15 2.3.2 Interpreting Functional Modules 17 3 FUNCTIONAL MODULE DISCOVERY FROM PROTEIN INTERACTION NETWORKS 21-44 3.1 Overview 21 3.2 Materials and Methods 22-44 3.2.1 Data Processing 23 3.2.2 Protein-Protein Interaction Network Construction 26-36 3.2.2.1 Identifying Interaction Network Hubs 28 3.2.2.2 Weighting of Protein Interactions 31 3.2.3 GO-Based Clutering And Classification 36 3.2.4 Intepreting Functional Module Groups and Modules 40-44 3.2.4.1 Visualising Through Cell Anatomy 40 3.2.4.2 Pathways and GO Classification Correlations 42 4 EXPERIMENTS AND BIOMODULAR SYSTEM 44-52 4.1 Experiments 44-51 4.1.1 Identifying Interaction Network Hubs 45 4.1.2 Determing Weight Function For Protein-Protein Interactions 46 4.1.3 Selecting Appropriate Inflation Value for MCL 47 4.1.4 Accessing Module Group Significance 49 4.2 BioModular System 50 5 CONCLUSION AND FUTURE WORK 53 5.1 Conclusion 53 5.2 Future Work 53 REFERENCES 54 APPENDIX 63

    1.Luscombe, N. M. et al. What is Bioinformatics? A Proposed Definition and Overview of the Field. Methods of Information in Medicine 40: 346-58, 2001.

    2.Hirschman, L. et al. Accomplishments and Challenges in Bioinformatics. Bioinformatics 18(12): 1553-61, 2002.

    3.Schatz, B. R. Mining Information for Functional Genomics. IEEE Intelligent Systems 17: 70-73, 2002.

    4.Kitano, H. Systems Biology: A Brief Overview. Science 295: 1662-1664, 2002.

    5.Watts, D. J. and Strogatz, S. H. Collective Dynamics of Small-world Networks. Nature 393: 440-2, 1998.

    6.Hartwell, L. H. et al. From Molecular to Modular Cell Biology. Nature 402: C47-52, 1999.

    7.Ihmelsm, J. et al. Revealing Modular Organization in the Yeast Transcriptional Network. Nature Genetics 31(4): 370-7, 2002.

    8.Oltvai, Z. N. and Barab?si, A. L. Life's Complexity Pyramid. Science 298: 763-764, 2002.

    9.Barabasi, A. L. and Oltvai, Z. N. Network Biology - Understanding The Cell's Functional Organization. Nature Reviews Genetics 5(2): 101-13, 2004.

    10.Ravasz, E. et al. Hierarchical Organization of Modularity in Metabolic Networks. Science 297: 1551-1555, 2002.

    11.Bu, D. et al. Topological Analysis Results of Protein-Protein Interaction in Budding Yeast. Nucleic Acids Research 31(9): 2443-2450, 2003.

    12.Rives, A. W. and Galitski, T. Modular Organization of Cellular Networks. PNAS 100(3): 1128-33, 2003.

    13.Han, J. D. Evidence for Dynamically Organized Modularity in the Yeast Protein-Protein Interaction Network. Nature 430: 88-93, 2004.

    14.Przulj, N. et al. Functional Topology in a Network of Protein Interactions. Bioinformatics 20(3): 340-8, 2004.

    15.Yook, S. H. et al. Functional and Topological Characterization of Protein Interaction Network. Proteomics 4: 928-942, 2004.

    16.Eisenberg, D. et al. Protein Function in the Post-Genomic Era. Nature 405: 823-6, 2000.

    17.Chen, Y. and Xu, D. Computational Analyses of High-Throughput Protein-Protein Interaction Data. Current Protein and Peptide Science 4(3): 159-180, 2003.

    18.Schwikowski, B. et al. A Network of Protein-Protein Interactions in Yeast. Nature Biotechnology 18(12): 1257-61, 2000.

    19.Koyut?rk, M. et al. An Efficient Algorithm for Detecting Frequent Subgraphs in Biological Networks. Bioinformatics 20: i200-i207, 2004.

    20.Lehner, B. and Fraser, A. G. A First-Draft Human Protein Interaction Map. Genome Biology 5(9): R63, 2004.

    21.Lee, P. H. and Lee, D. Modularized Learning of Genetic Interaction Networks from Biological Annotations and mRNA Expression Data. Bioinformatics 2005. [Electronic Publication Ahead of Print]

    22.Kelley, B. P. et al. Conserved Pathways Within Bacteria and Yeast as Revealed by Global Protein Network Alignment. PNAS 100(20): 11394-11399, 2003.

    23.Bork, P. et al. Protein Interaction Networks from Yeast to Human. Current Opinion in Structure Biology 14(3): 292-9, 2004.

    24.Qin, H. et al. Evolution of the Yeast Protein Interaction Network. PNAS 100(22): 12820-4, 2003.

    25.Wuchty, S. et al. Evolutionary Conservation of Motif Constituents in the Yeast Protein Interaction Network. Nature Genetics 35(2): 176-179, 2003.

    26.Wuchty, S. et al. The Architecture of Biological Networks. Complex Systems in Biomedicine, Kluwer Academic Publishing, 2003.

    27.Segal, E. et al. Discovering Molecular Pathways from Protein Interaction and Gene Expression Data. Bioinformatics 19 Supplement 1: i264-71, 2003.

    28.Farach-Colton, M. et al. Discovering Temporal Relations in Molecular Pathways Using Protein-Protein Interaction. Annual Conference on Research in Computational Molecular Biology. Pages: 150-156, 2004.

    29.Archakov, A. I. et al. Protein-Protein Interactions as a Target for Drugs in Proteomics. Proteomics 3(4): 380-391, 2003.

    30.Hishigaki, H. et al. Interaction-Based Analysis of Protein Function and Network. Genome Informatics, 1999.

    31.Albert, R. et al. Attack and Error Tolerance of Complex Networks. Nature 506: 378-82, 2000.

    32.Jeong, H. et al. Lethality and Centrality in Protein Networks. Nature 411: 41-2, 2001.

    33.Ravasz, E. and Barabsi, A. L. Hierarchical Organization in Complex Networks. Physics Review E 67: 026122, 2002.

    34.Wagner, A. The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes. Molecular Biology Evolution 18: 1283-1292, 2001.

    35.Maslov, S. and Sneppen, K. Specificity and Stability in Topology of Protein Networks. Science 296: 910-913, 2002.

    36.Salwinski, L. and Eisenberg, D. Computational Methods of Analysis of Protein-Protein Interactions. Current Opinion in Structural Biology 13(3): 377-82, 2003.

    37.Kang, H. Y. et al. Functional Modules from Protein Networks of Kinome and Cell Cycle in Saccharomyces Cerevisiae. 3rd International IEEE Computer Society Computational Systems Bioinformatics Conference, 2004.

    38.Watts, D. J. and Strogatz, S. H. Collective Dynamics of Small-world Networks. Nature 393: 440-2, 1998.

    39.Tanay, A. et al. Revealing Modularity and Organization in the Yeast Molecular Network by Integrated Analysis of Highly Heterogeneous Data. PNAS 101(9): 2981-6, 2004.

    40.Spirin, V and Mirny, L. A. Protein Complexes and Functional Modules in Molecular Networks. PNAS 100(21): 12123-8, 2003.

    41.Uetz, P. et al. A Comprehensive Analysis of Protein-Protein Interactions in Saccharomyces cerevisiae. Nature 403: 623-627, 2000.

    42.Ito, T. et al. Toward a Protein-Protein Interaction Map of the Budding Yeast: A Comprehensive System to Examine Two-Hybrid Interactions in All Possible Combinations Between the Yeast Proteins. PNAS 97: 1143-1147, 2000.

    43.Ito, T. et al. A Comprehensive Two-Hybrid Analysis to Explore the Yeast Protein Interactome. PNAS 98: 4569-4574, 2001.

    44.Tong, A. H. et al. A Combined Experimental and Computational Strategy to Define Protein Interaction Networks for Peptide Recognition Modules. Science 295: 321-324, 2002.

    45.Ho, Y. et al. Systematic Identification of Protein Complexes in Saccharomyces cerevisiae by Mass Spectrometry. Nature 415: 180-3, 2002.

    46.Enright, A. J. et al. Protein Interaction Maps for Complete Genomes Based on Gene Fusion Events. Nature 402: 86-90, 1999.

    47.Marcotte, E. M. et al. Detecting Protein Function and Protein-Protein Interactions from Genome Sequences. Science 285: 751-753, 1999.

    48.Dandekar, T. et al. Conservation of Gene Order: a Fingerprint of Proteins that Physically Interact. Trends in Biochemical Science 23: 324-328, 1998.

    49.Overbeek, R. et al. The Use of Gene Clusters to Infer Functional Coupling. PNAS 96: 2896-2901, 1999.

    50.Huynen, M. A. and Bork, P. Measuring Genome Evolution. PNAS 95: 5849-5856, 1998.

    51.Pellegrini, M. et al. Assigning Protein Functions by Comparative Genome Analysis: Protein Phylogenetic Profiles. PNAS 96: 4285-4288, 1999.

    52.von Mering, C. et al. Comparative Assessment of Large-Scale Data Sets of Protein-Protein Interactions. Nature 417: 399-403, 2002.

    53.Bader, G. D. and Hogue, C. W. An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. Bioinformatics 4(1): 2, 2003

    54.Saito, R. et al. Construction of Reliable Protein-Protein Interaction Networks with a New Interaction Generality Measure. Bioinformatics 19(6): 756-763(8), 2003.

    55.Pereira-Leal, J. B. et al. Detection of Functional Modules from Protein Interaction Networks. Proteins 54(1): 49-57, 2004.

    56.Chen, J. Y. et al. High-throughput Protein Interactome Data: Minable or Not? Proceedings of the 4th ACM SIGKDD Workshop on Data Mining in Bioinformatics (BioKDD 2004), p18-23, 2004.

    57.Grigoriev, A. A Relationship Between Gene Expression and Protein Interactions on the Proteome Scale: Analysis of the Bacteriophage T7 and the Yeast Saccharomyces cerevisiae. Nucleic Acids Reserch 29: 3513-3519, 2001.

    58.Jansen, R. et al. Relating Genome Expression Data with Protein-Protein Interactions. Genome Research 12: 37-46, 2002.

    59.Kemmeren, P. et al. Protein Interaction Verification and Functional Annotation by Integrated Analysis of Genome-Scale Data. Molecular Cell. 9(5): 1133-43, 2002.

    60.Peri, S. et al. HPRD: Human Protein Reference Database as a Discovery Resource for Proteomics. Nucleic Acids Research 32: D497-D501, 2004.

    61.Bader, G. D. et al. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Research 31(1): 248-50, 2003.

    62.Xenarios, I. et al. DIP, the Database of Interacting Proteins: A Research Tool for Studying Cellular Networks of Protein Interactions. Nucleic Acids Research 30(1): 303-305, 2002.

    63.Zanzoni, A. et al. MINT: A Molecular INTeraction Database. FEBS Letter 513(1): 135-40, 2002.

    64.Mewes, H. W. et al. MIPS: A Database for Genomes and Protein Sequences. Nucleic Acids Research 30(1): 31-4, 2002.

    65.Cherry, J. M. et al. SGD: Saccharomyces Genome Database. Nucleic Acids Research 26(1): 73-9, 1998.

    66.Segal, E. et al. Genome-wide Discovery of Transcriptional Modules from DNA Sequence and Gene Expression. Bioinformatics 19 Supplement 1: i273-82, 2003.

    67.Segal, E. et al. Module Networks: Identifying Regulatory Modules and their Condition-specific Regulators from Gene Expression Data. Nature Genetics 34(2): 166-76, 2003.

    68.Segal, E. et al. A Module Map Showing Conditional Activity of Expression Modules in Cancer. Nature Genetics 36(10): 1090-8, 2004.

    69.Bar-Joseph, Z. et al. Computational Discovery of Gene Module and Regulatory Network. Nature Biotechnology 21(11): 1337-42, 2003.

    70.Tornow, S. and Mewes, H. W. Functional Modules by Relating Protein Interaction Networks and Gene Expression. Nucleic Acids Research 31(21): 6283-9, 2003.

    71.Shakhnovich, B. E. et al. Comparisons of Predicted Genetic Modules: Identification of Co-Expressed Genes through Module Gene Flow. Genome Informatics 15(1): 221-8, 2004.
    72.Li, H. et al. Detection of Parallel Functional Modules by Comparative Analysis of Genome Sequences. Nature Biotechnology 23(2): 253-60, 2005.

    73.Pereira-Leal, J. B. and Teichmann, S. A. Novel Specificities Emerge by Stepwise Duplication of Functional Modules. Genome Research 15: 552-559, 2005.

    74.Prinz, S. et al. Control of Yeast Filamentous-Form Growth by Modules in an Integrated Molecular Network. Genome Research 14(3): 380-90, 2004.

    75.Manke, T. et al. Detecting Functional Modules of Transcription Factor Binding Sites in the Human Genome. 1st Annual RECOMB Satellite Workshop on Regulatory Genomics, 2004.

    76.Stuart, J. M. et al. A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules. Science 302: 249-255, 2003.

    77.von Mering, C. et al. Genome Evolution Reveals Biochemical Networks and Functional Modules. PNAS 100(26): 15428-33, 2003.

    78.Lu, H. et al. The Interactome as a Tree: An Attempt to Visualize the Protein-Protein Interaction Network in Yeast. Nucleic Acids Research 32(16): 4804-4811, 2004.

    79.Lee, I. et al. A Probabilistic Functional Network of Yeast Genes. Science 306: 1555-1558, 2004.

    80.Poyatos, J. F. and Hurst, L. D. How Biologically Relevant are Interaction-based Modules in Protein Networks. Genome Biology 5(11): R93, 2004.

    81.Batada, N. N. CNplot: Visualizing Pre-Clustered Networks. Bioinformatics 20(9): 1455-6, 2004.

    82.Chang, A. N. et al. An Enhanced Java Graph Applet Interface for Visualizing Interactomes. Bioinformatics 21(8): 1741-2, 2005.

    83.Enright, A. J. et al. BioLayout: An Automatic Graph Layout Algorithm for Similarity Visualization. Bioinformatics 17(9): 853-4, 2001.
    84.Han, K. et al. WebInterViewer: Visualizing and Analyzing Molecular Interaction Networks. Nucleic Acids Research 32: W89-95, 2004.

    85.Mrowka, R. A Java Applet for Visualizing Protein-Protein Interaction. Bioinformatics 17(7): 669-71, 2001.

    86.Shannon, P. et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research 13(11): 2498-504, 2003.

    87.Camon, E. et al. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Research 32(1): D262-D266, 2004.

    88cHermjakob, H. et al. IntAct: An Open Source Molecular Interaction Database. Nucleic Acids Research 32: D452-D455, 2004.

    89.Joshi-Tope, G. et al. Reactome: A Knowledgebase of Biological Pathways. Nucleic Acids Research 33: D428-32, 2005.

    90.van Ommen, G. et al. HUGO: A Midlife Crisis? Human Genome Organisation. Nature Genetics 19(1): 113-4, 1998.

    91.Bairoch, A. et al. UniProt: The Universal Protein Resource. Nucleic Acids Research 33: D154-9, 2005.

    92.Maglott, D. et al. Entrez Gene: Gene-Centered Information at NCBI. Nucleic Acids Research 33: D54-D58, 2005.

    93.Pontius, J. U. et al. UniGene: A Unified View of the Transcriptome. The NCBI Handbook. Bethesda (MD): National Center for Biotechnology Information, 2003.

    94.Strausberg, R. L. The Cancer Genome Anatomy Project: New Resources for Reading the Molecular Signatures of Cancer. Journal of Pathology 195(1): 31-40, 2001.

    95.Kanehisa, M. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28: 27-30, 2000.

    96.von Mering, C. et al. Comparative Assessment of Large-Scale Data Sets of Protein-Protein Interactions. Nature 417: 399-403, 2002.

    97.Ashburner, M. et al. Gene ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nature Genetics 25(1): 25-9, 2000.

    98.Ding, C. et al. A Unified Representation for Multi-Protein Complex Data for Modeling Protein Interaction Networks. Lawrence Berkeley National Laboratory, 2003.

    99.van Dongen, S. A Cluster Algorithm for Graphs. Technical Report INS-R0010, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000.

    100.Enright, A. J. et al. An Efficient Algorithm for Large-Scale Detection of Protein Families. Nucleic Acids Research 30(7): 1575-84, 2002.

    101.Li, L. et al. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research 13(9): 2178-89, 2003.

    102.Wilhelm, T. et al. Physical and Functional Modularity of the Protein Network in Yeast. Molecular and Cellular Proteomics 2: 292-298, 2003.

    103.Vogelstein, B. et al. Surfing the p53 Network. Nature 408: 307-310, 2000.

    下載圖示 校內:2006-08-05公開
    校外:2006-08-05公開
    QR CODE