簡易檢索 / 詳目顯示

研究生: 歐索夫
Ozhgibesov, Mikhail
論文名稱: Knudsen Compressor Studying by Molecular Dynamics
Knudsen Compressor Studying by Molecular Dynamics
指導教授: 呂宗行
Leu, Tzong-Shyng
鄭金祥
Chen, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 79
外文關鍵詞: molecular dynamics, rarified gas, Knudsen compressor, capillary membrane
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The effects of average pressure, temperature ratio, length and open area of capillaries membrane on mass flow rate in transitional regime of single stage Knudsen compressor were investigated numerically by using molecular dynamic method. Both two-dimensional and three-dimensional models were implemented in this investigation. Physical models have nano-scale pores and micro-scale tanks filled with monoatomic Argon gas. The interactions between gas molecules were modeled by using Lennard-Jones potential function. Investigations were performed in a wide range of parameters including average pressure (57 torr to 10 torr); temperature ratio (from 1.54 to 2.29); capillary’s radius (50Å to 150Å). The results were compared with analytical prediction in the literatures earlier, and qualitative agreement was observed. Moreover effect of capillaries length, observed in current work, has a qualitative agreement with experimental data. Based on the obtained results, suggestions for future studies were given.

    Abstract ……………………………………………………………………………………I Acknowledgements………………………………………………………………………II Contents……………………………………………………………………………………III List of tables………………………………………………………………………………V List of figures……………………………………………………………………………VI Nomenclature………………………………………………………………………………X Chapter 1: Introduction……………………………………………………………………1 1.1 Motivation………………………………………………………………………1 1.2 Phenomenon background………………………………………………………3 1.3 Research Objectives…………………………………………………………5 1.4 Literature review………………………………………………………………5 1.5 Research procedure……………………………………………………………7 1.6 Thesis Outline…………………………………………………………………7 Chapter 2: Physical model description……………………………………………………9 2.1 Knudsen compressor definition…………………………………………………9 2.2 Theoretical analysis of single stage compressor………………………………10 2.3 Current model description……………………………………………………13 Chapter 3: Mathematical model description………………………………………………15 3.1 Introduction to molecular dynamic method…………………………………15 3.2 Initialization……………………………………………………………………17 3.3 Boundary conditions…………………………………………………………19 3.4. Potential function and interatomic interaction force…………………………21 Alternative expressions……………………………………………………23 Molecular dynamics simulation: Truncated potential……………………23 Verlet list…………………………………………………………………24 3.5 Verlet integration equations of motion………………………………………25 Basic Verlet…………………25 Velocity Verlet……………………………………………………………27 The force calculation………………………………………………………28 Chapter 4: Results and discussion…………………………………………………………29 4.1 Main definitions……………………………………………………………….29 4.2 Two-dimensional Knudsen compressor results………………………………31 4.3 Three-dimensional Knudsen compressor results………………………………33 Chapter 5: Conclusion and suggestion for future study…………………………39 References…………………………………………………………………………41 Tables………………………………………………………………………………46 Figures……………………………………………………………………………………51

    [1] I. Waitz, G. Gauba, and Y. Tzeng, Journal of Fluids Engineering 120:109 (1998)
    [2] K. Fu, A. Knobloch, B. Cooley, D. Walter, C. Fernandez-Pello, D. Liepmann and K. Miyaska, ASME 35th National Heat Transfer Conference, NHTC2001-20089 (2001).
    [3] L. Sitzki, K. Borer, E. Schuster, P.D. Ronney, S. Wussow, Third Asia-Pacific Conference on Combustion, Seoul, Korea, June 24-27, 2001.
    [4] G. Bisio, G. Rubatto “Thermodynamic Analysis of Heat Engine with a Knudsen-Effect Pressure Generator”, Energy Conversion Engineering Conference and Exhibit, 2000. (IECEC) 35th Intersociety. 2:900-907 vol.2.
    [5] S. Takata, H. Sugimoto, and S. Kosuge, “Gas separation by means of the Knudsen compressor,” Eur. J. Mech. B-Fluids 26(2), 155–181 (2007)
    [6] G. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows Fundamentals and Simulation, Springer, 2005
    [7] O. Reynolds, Philos. Trans. R. Soc. London, Ser. B 170, 727 (1879).
    [8] M. Knudsen, Eine Revision der Gleichgewichsbedingung der Gase. Thermische Molekularstromung, Annalen der Physik, vol. 336(1), pp. 205–229, 1909.
    [9] M. Knudsen, Thermischer Molekulardruck der Gase in RoЁ hren, Annalen der Physik, vol. 338(16), pp. 1435–1448, 1910.
    [10] K. E. Parmenter, F. Milstein, “Mechanical Properties of Silica Aerogels”, Journal of Non-Crystalline Solids, 223, 179-189, (1998).
    [11] G. Pham-Van-Diep, P. Keely, E.P. Muntz, and D.P. Weaver, A Micromechanical Knudsen Compressor, in J. Harvey and G. Lord (eds.), Rarefied Gas Dynamics, pp. 715-721, Oxford University Press, Oxford, 1995.
    [12] S. E. Vargo and E.P. Muntz, An Evaluation of a Multiple Stage Micromechanical Knudsen Compressor and Vacuum Pump, in Ching Shen (ed.), Rarefied Gas Dynamics, pp. 995–1000, Peking University Press, Beijing, 1997.
    [13] S. E. Vargo, E.P. Muntz, G.R. Shiflett, and W.C. Tang, The Knudsen Compressor as a Micro and Macro Scale Vacuum Pump without Moving Parts or Fluids, Journal of Vacuum Science and Technology A, vol. 17, pp. 2308–2313, 1999.
    [14] E. P. Muntz, Y. Sone, K. Aoki, S. Vargo, and M. Young, Performance Analysis and Optimization Considerations for a Knudsen Compressor in Transitional Flow, Journal of Vacuum Science and Technology A, vol. 1, p. 214, 2002.
    [15] S. E. Vargo and E.P. Muntz, Comparison of Experiment and Prediction for Transitional Flow in a Single Stage Micromechanical Knudsen Compressor, in R. Brun, R. Campargue, R. Gatignol, J.C. Lengrand (eds.), Rarefied Gas Dynamics, pp. 711–718, Ce_padues-Eґditions, Marseilles, 1998.
    [16] S. E. Vargo, The Development of the MEMS Knudsen Compressor as a Low Power Vacuum Pump for Portable and In Situ Instruments, Ph.D. thesis, University of Southern California, Los Angeles, CA, 2000.
    [17] M. Young, Investigation of Several Important Phenomena Associated with the Development of Knudsen Compressors, Ph.D. thesis, University of Southern California, Los Angeles, CA, 2004.
    [18] Y.-L. Han, Investigation of Micro/Meso-Scale Knudsen Compressors at Low Pressures, Ph.D. thesis, University of Southern California, Los Angeles, CA, 2006.
    [19] E. A. Mason, R.R. Evans, and G.M. Watson, Gaseous Diffusion in Porous Media. III. Thermal Transpiration, Journal of Chemical Physics, vol. 38(8), p. 1808, 1963.
    [20] B. T. Porodnov, P.E. Suetin, S.F. Borisov, and V.D. Akinshin, Experimental Investigations of Rarefied Gas Flows in Different Channels, Journal of Fluid Mechanics, vol. 64(3), p. 417, 1974.
    [21] P. Norberg, L.G. Petersson, and I. Lundstrum, Characterization of Gas Transport through Micromechanical Submicron Channels in Silicon, Vacuum, vol. 45, p. 139, 1994;
    [22] E. R. Arkilic, M.A. Schmidt, and K.S. Breuer, TMAC Measurements in Silicon Micromachined Channels, in C. Shen (ed.), Rarefied Gas Dynamics, Peking University Press, Beijing, p. 983, 1995.
    [23] J. L. Spencer and L.F. Brown, Experimental Observation of Gas Phase-Adsorbed Phase Interactions During Counter Diffusion in Porous Alumina, Journal of Chemical Physics, vol. 63(7), p. 2882, 1975.
    [24] V. D. Borman, S.Yu. Krylov, A.V. Prosyanov, and A.M. Kharitonov, Theory of Transport Processes inNonequilibriumGas-Solid Systems, Soviet Physics, JETP, vol. 63(1), p. 43, 1986.
    [25] V. D. Borman, S.Yu. Krylov, and A.V. Prosyanov, Theory of Nonequilibrium Phenomena of a Gas-Solid Interface, Soviet Physics, JETP, vol. 67(10), p. 2110, 1988.
    [26] V. D. Borman, S.Yu. Krylov, A.V. Prosyanov, Fundamental Role of Unbound Surface Particles in Transport Phenomena along a Gas-Solid Interface, Soviet Physics, JETP, vol. 70(6), p. 1013, 1990.
    [27] R. M. Hoogeveen, L.J.F. Hermans, V.D. Borman, and S.Yu. Krylov, Unified Description of Rotating-Molecule-Surface Interaction: Comparison with Experiment, Physical Review A, vol. 42(11), p. 6480, 1990.
    [28] J.J.M. Beenakker, V.D. Borman, and S.Yu. Krylov, Molecular Transport in the Nanometer Regime, Physical Review Letters, vol. 72(4), p. 514, 1994.
    [29] J. J.M. Beenakker, V.D. Borman, and S.Yu. Krylov, Molecular Transport in Subnanometer Pores: Zero-Point Energy, Reduced Dimensionality, and Quantum Sieving, Chemical Physics Letters, vol. 232, p. 379, 1995.
    [30] V. I. Roldughin and V.M. Zhdanov, Effect of Surface Forces on the Gas Flow in Nanosize Capillaries, in M. Capitelli (ed.), Rarefied Gas Dynamics, AIP Conference Proceedings, vol. 762, American Institute of Physics, New York, p. 774, 2005.
    [31] S. V. Nader, A.J.H. Frijns, A.A. van Stennhoven, A.J. Markvoort, and P.A.J. Hilbers, Hybrid Molecular Dynamic-Monte Carlo Simulation for the Properties of a Dense and Dilute Gas in a Microchannel, in M. Capitelli (ed.), Rarefied Gas Dynamics, AIP Conference Proceedings, vol. 762, American Institute of Physics, New York, p. 767, 2005.
    [32] A. A. Alexeenko, S.F. Gimelshein, E.P. Muntz, , and A.D. Ketsdever, , "Kinetic Modeling of Temperature Driven Flows in Short Microchannels", Int. J. of Thermal Sciences, Vol. 45, No. 11, pp. 1045-1051, Nov. 2006.
    [33] A. A. Alexeenko, S.F. Gimelshein, E.P. Muntz, and A.D. Ketsdever, Modeling of Thermal Transpiration Flows for Knudsen Compressor Optimization, AIAA Paper 2005-963.
    [34] Y. Sone and E. Itakura, J. Vac. Soc. Jpn. 33, 92 1990
    [35] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford, U.K.: Clarendon, 1994
    [36] G. Mo and F. Rosenberger, Molecular Dynamics Simulation of Flow in a Two Dimensional Channel with Atomically Rough Walls, Phys. Rev. A., 42, 4688 (1990).
    [37] M. Hasegawa and Y. Sone “Rarefied gas flow through a slit,” Physics of Fluids A- Fluid. Dynamics, 3(3):466 (1991)
    [38] B. J. Alder, T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. doi:10.1063/1.1730376.
    [39] M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1987
    [40] C. A. Angell, and M. Goldstein, Eds., Dynamic Aspects of Structural Change in Liquids and Glasses, Vol. 484 of Ann. NY Acad. Sci., New York Academy of Sciences, New York, 1986
    [41] J. C. Maxwell (1879) Phil Trans Roy Soc 1, Appendix
    [42] C. Shen, Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows (Springer-Verlag, Berlin, 2005)
    [43] J. E. Lennard-Jones. Proceedings of the Physical Society 1931, 43, 461-482.
    [44] T. H. Barron, C. Domb. On the Cubic and Hexagonal Close-Packed Lattices. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1955, 227, 447-465.
    [45] L. Verlet. Computer “experiments” on classical fluids. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159:98-103, 1967
    [46] J. M. Haile. Molecular Dynamics Simulations: Elementary Methods. John Wiley & Sons, New York, NY, 1992.
    [47] Y.-S. Lien, C.-Y. Wu, and Y.-C. Chao The Operation Characteristics of Knudsen Thermal Transpiration with Catalytic Reactor Proc. 21st ICDERS, Poitiers, France, July 23-27, 2007

    下載圖示 校內:立即公開
    校外:2009-06-30公開
    QR CODE