| 研究生: |
黃信傑 Huang, Hsin-Chieh |
|---|---|
| 論文名稱: |
氧化石墨烯光催化還原製備超級電容器之碳電極材料 Photocatalytically Reduced Graphene Oxides as Carbon Electrode Materials for Supercapacitors |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 電化學電容器 、超級電容器 、電容 、氧化石墨 、石墨烯 、光催化還原 |
| 外文關鍵詞: | electrochemical capacitor, capacitance, graphite oxide, graphene, photocatalytically reduction |
| 相關次數: | 點閱:134 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯(graphene sheets)是一個理想碳材,具有高表面積,可被電解質所利用,離子可在石墨烯表面產生作用或反應。使用還原方法還原氧化石墨(graphite oxide, GO)可產生石墨烯碳材。本研究利用內照式反應器,以汞燈為紫外光光源,進行光催化還原(photocatalytic reduction)氧化石墨烯水溶液獲得我們要的石墨烯碳材(irr-GO)。在硫酸水溶液中,其電容值可高達220 F g-1,主要是因為電雙層電容與位於石墨烯片邊緣氧官能基產生可逆的擬電容所造成。隨著光催化還原時間的增加,石墨烯片上的氧官能基逐漸地被去除,改善了充放電的速率行為。在交流阻抗分析中也證實,光催化還原時間越久,可降低碳材的接觸阻力而提升導電度,並且能有效地降低電容行為的遲滯時間(relaxation time)。組成對稱性二極式超級電容器,工作電位1 V,在高功率1000 W kg-1下比能量可達5 Wh kg-1。此石墨烯電容器的穩定性很高,在充放電次數達20,000圈後,比電容量還維持原本的92%。
Graphene sheets are an ideal carbon material with the highest area available for electrolyte interaction and can be obtained by reducing graphite oxide (GO). This study presents the photocatalytic reduction of GO in water with mercurylamp irradiation. The specific capacitance of the reduced GO in an H2SO4 aqueous solution reached levels as high as 220 F g-1. This is because of the double layer formation and the reversible pseudocapacitive processes caused by oxygen functionalities at the sheet periphery. The rate capability for charge storage increases with irradiation time due to the continued reduction of oxygenated sites on the graphene basal plane. AC impedance analysis shows that prolonged light irradiation promotes electronic percolation in the electrode, significantly reducing the capacitive relaxation time. With a potential widow of 1 V, the resulting symmetric cells can deliver an energy level of 5 Wh kg-1 at a high power of 1000 W kg-1. These cells show superior stability, with 92% retention of specific capacitance after 20,000 cycles of galvanostatic charge-discharge.
1. R. Kötz, M. Carlen, Electrochim. Acta, 45 (2000) 2483.
2. L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, J. Power Sources, 80 (1999) 149.
3. J.P. Zheng, T.R. Jow, J. Power Sources, 62 (1996) 155.
4. J.R. Miller, P. Simon, Science, 321 (2008) 651.
5. K. Okajima, A. Ikeda, K. Kamoshita, M. Sudoh, Electrochimica Acta, 51 (2005) 972.
6. B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Electrochimica Acta, 52 (2007) 4595.
7. C.W. Huang, C.M. Chuang, J.M. Ting, H. Teng, J. Power Sources, 183 (2008) 406.
8. C.W. Huang, H. Teng, J. Electrochem. Soc., 155 (2008) A739.
9. C.W. Huang, C.H. Hsu, P.L. Kuo, C.T. Hsieh, H. Teng, Carbon, 49 (2011) 895.
10. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, Electrochem. Commun., 10 (2008) 795.
11. Y. Chen, X. Zhang, P. Yu, Y.W. Ma, J. Power Sources, 195 (2010) 3031.
12. Y.Q. Han, L.A. Hao, X.G. Zhang, Synthetic Met., 160 (2010) 2336.
13. C.P. Tien, H. Teng, J. Power Sources, 195 (2010) 2414.
14. S.Y. Yang, K.H. Chang, Y.F. Lee, C.C.M. Ma, C.C. Hu, Electrochem. Commun., 12 (2010) 1206.
15. D. Yu, L. Dai, J. Phys. Chem. Lett., 1 (2010) 467.
16. T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Adv. Funct. Mater., 20 (2010) 2255.
17. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature, 442 (2006) 282.
18. R.J.W.E. Lahaye, H.K. Jeong, C.Y. Park, Y.H. Lee, Phys. Rev. B, 79 (2009) 125435.
19. S.J. Park, R.S. Ruoff, Nature Nanotech., 4 (2009) 217.
20. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon, 45 (2007) 1558.
21. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nature Nanotech., 4 (2008) 25.
22. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C, 112 (2008) 8192.
23. W. Gao, L.B. Alemany, L.J. Ci, P. Ajayan, Nature Chem., 1 (2009) 403.
24. Y. Si, E.T. Samulski, Nano Lett., 8 (2008) 1679.
25. M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Chem. Mater., 19 (2007) 4396.
26. G. Williams, B. Serger, P.V. Kamat, ACS Nano, 2 (2008) 1487.
27. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources, 157 (2006) 11.
28. O. Barbieri, M. Hahn, A. Herzog, R. Kotz, Carbon, 43 (2005) 1303.
29. E. Frackowiak, Phys. Chem. Chem. Phys., 9 (2007) 1774.
30. A special issue on Electrochemical Capacitors, Electrochem. Soc. Interf., 2008, Spring.
31. N.E. Tran, S.G. Lambrakos, J.J. Lagowski, J. Mater. Eng. Perform., 18 (2009) 95.
32. T.L. Makarova, B. Sundqvist, P. Scharff, M.E. Gaevski, E. Olsson, V.A. Davydov, A.V. Rakhmanina, Carbon, 39 (2001) 2203.
33. D. Eder, Chem. Rev., 110 (2010) 1348.
34. M. Pumera, Chem. Rec., 9 (2009) 211.
35. D. Li, R.B. Kaner, Science, 320 (2008) 1170.
36. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, J. Phys. Chem. C, 113 (2009) 13103.
37. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev., 110 (2010) 132.
38. A.B. Fuertes, S. Alvarez, Carbon, 42 (2004) 3049.
39. A.K. Geim, K.S. Novoselov, Nat. Mater., 6 (2007) 183.
40. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem., Int. Ed., 48 (2009) 7752.
41. X.J. Liu, T. Osaka, J. Electrochem. Soc., 143 (1996) 3982.
42. S. Mitra, S. Sampath, Electrochem. Solid-State Lett., 7 (2004) A264.
43. B.H. Ka, S.M. Oh, J. Electrochem. Soc., 155 (2008) A685.
44. E.G. Bushueva, P.S. Galkin, A.V. Okotrub, L.G. Bulusheva, N.N. Gavrilov, V.L. Kuznetsov, S.I. Moiseekov, Phys. Status Solidi B, 245 (2008) 2296.
45. C. Portet, G. Yushin, Y. Gogotsi, Carbon, 45 (2007) 2511.
46. F. Zhou, C. Jehoulet, A.J. Bard, J. Am. Chem. Soc., 114 (1992) 11004.
47. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature, 318 (1985) 162.
48. L. Echegoyen, L.E. Echegoyen, Acc. Chem. Res., 31 (1998) 593.
49. V.V.N. Obreja, Phys. E., 40 (2008) 2596.
50. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Nano Lett., 8 (2008) 2664.
51. M. Pumera, Chem.–Eur. J., 15 (2009) 4970.
52. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science, 297 (2002) 787.
53. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater., 5 (2006) 987.
54. T. Bordjiba, L.H.D.M. Mohamedi, Adv. Mater., 20 (2008) 815.
55. J. Chen, A.I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, G.G. Wallace, Adv. Mater., 20 (2008) 566.
56. J. Yan, H. Zhou, P. Yu, L. Su, L. Mao, Adv. Mater., 20 (2008) 2899.
57. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett., 70 (1997) 1480.
58. K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater., 11 (2001) 387.
59. H. Zhang, G. Cao, Y. Yang, Z. Gu, J. Electrochem. Soc., 155 (2008) K19.
60. E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Aoros, F. Beguin, Chem. Phys. Lett., 361 (2002) 35.
61. C. Portet, P.L. Taberna, P. Simon, E. Flahaut, J. Electrochem. Soc., 153 (2006) A649.
62. M.M. Shaijumon, F.S. Ou, L. Ci, P.M. Ajayan, Chem. Commun. (2008) 2373.
63. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Electrochem. Commun., 10 (2008) 1056.
64. C. Meng, C. Liu, S. Fan, Electrochem. Commun., 11 (2009) 186.
65. M.S.P.S.M. Hughes, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, A.H. Windle, Adv. Mater., 14 (2002) 382.
66. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science, 306 (2004) 666.
67. A.K. Geim, Science, 324 (2009) 1530.
68. X. Wang, L.J. Zhi, K. Mullen, Nano Lett., 8 (2008) 323.
69. T. Yumura, K. Kimura, H. Kobayashi, R. Tanaka, N. Okumura, T. Yamabe, Phys. Chem. Chem. Phys., 11 (2009) 8275.
70. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature, 458 (2009) 872.
71. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nat. Nanotechnol., 4 (2009) 25.
72. M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol., 4 (2009) 30.
73. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nat. Mater., 8 (2009) 203.
74. P.W. Sutter, J.-I. Flege, E.A. Sutter, Nat. Mater., 7 (2008) 406.
75. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature, 457 (2009) 706.
76. X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H.J. Rader, K. Mullen, J. Am. Chem. Soc., 130 (2008) 4216.
77. M. Taghioskoui, Mater. Today, 12 (2009) 34.
78. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z.M. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, J. Am. Chem. Soc., 131 (2009) 3611.
79. J.N. Coleman, Adv. Funct. Mater., 19 (2009) 3680.
80. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol., 3 (2008) 101.
81. K.A. Ritter, J.W. Lyding, Nanotechnology, 19 (2008) 015704.
82. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc., 80 (1958) 1339.
83. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Chem. Mater., 11 (1999) 771.
84. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature, 442 (2006) 282.
85. W. Gao, L.B. Alemany, L.J. Ci, P.M. Ajayan, Nat. Chem., 1 (2009) 403.
86. P.K. Ang, S.A. Wang, Q.L. Bao, J.T.L. Thong K.P. Loh, ACS Nano, 3 (2009) 3587.
87. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature, 448 (2007) 457.
88. C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F. Wen, P.X. Hou, M.Z. Wang, H.M. Cheng, Adv. Mater., 21 (2009) 3007.
89. R. Ruoff, Nat. Nanotechnol., 3 (2008) 10.
90. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett., 8 (2008) 3498.
91. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, J. Chem. Sci., 120 (2008) 9.
92. X. Zhao, H. Tian, M. Zhu, K. Tian, J.J. Wang, F. Kang, R.A. Outlaw, J. Power Sources, 194 (2009) 1208.
93. J. Xia, F. Chen, J. Li, N. Tao, Nat. Nanotechnol., 4 (2009) 505.
94. L.J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc., 131 (2009) 11027.
95. D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano, 3 (2009) 1745.
96. A.V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater., 21 (2009) 5004.
97. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon, 48 (2010) 487.
98. Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, J. Electroanal. Chem., 634 (2009) 68.
99. K. Zhang, L.L. Zhang, J. Wu, X.S. Zhao, Chem. Mater., 22 (2010) 1392.
100. S. Brunauer, The Adsorption of Gases and Vapor. Vol. 1, Physical Adsorption, Princeton University, Princeton, Now York, 1943.
101. J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed., 38 (1999) 56.
102. S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60 (1938) 390.
103. R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B, 103 (1999) 7743.
104. A.H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970.
105. P. Tarazona, U.M.B. Marconi, R. Evans, Mol. Phys., 60 (1987) 543.
106. M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon, 40 (2000) 2961.
107. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett., 70 (1997) 2684.
108. L. Liu, Y. Qin, Z.X. Guo, D. Zhu, Carbon, 41 (2003) 331.
109. K.H. Liao, J.M. Ting, Carbon, 42 (2004) 509.
110. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
111. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Carbon, 37 (1999) 1379.
112. H.D. Young, Physics, Addison-Wesley Publishing Co. :New York, 1992.
113. A.J. Bard, L.R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996.
114. D. Qu, H. Shi, J. Power Sources 74 (1998) 99.
115. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch :New York, (1998).
116. J.S. Mattson, Jr. H.B. Mark, Activated Carbon : Surface Chemistry and Adsorption from Solution, Wiley-Vch :New York, 1998.
117. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980.
118. B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105.
119. B.D. Cullity, S.R. Stock, 3rd ed., Prentice Hall, 2001.
120. M. Yan, F. Chem, J. Zhang, M. Anpo, J. Phys. Chem. B, 109 (2005) 8673.
121. J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Langmuir, 24 (2008) 10560.
122. T. Szabó, O. Berkesi, I. Dékány, Carbon, 43 (2005) 3181.
123. Y.H. Ding, P. Zhang, Q. Zhuo, H.M. Ren, Z.M. Yang, Y. Jiang, Nanotechnology, 22 (2011) 215601.
124. O. Akhavan, ACS Nano, 4 (2010) 4174.
125. Y.R. Nian, H.J.Teng, Electrochem. Soc., 149 (2002) A1008.
126. H.A. Andreas, B.E. Conway, Electrochimica Acta, 51 (2006) 6510.
127. A. Mills, P.A. Duckmanton, J. Reglinski, Chem. Commun., 46 (2010) 2397.
128. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Chem. Mater., 21 (2009) 2950.
129. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon,47 (2009) 145.
130. X.B. Fan, W.C. Peng, Y. Li, X.Y. Li, S.L. Wang, G.L. Zhang, F.B. Zhang, Adv. Mater.,20 (2008) 4490.
131. J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan, Carbon, 45 (2007) 785.
132. H. Yamada, H. Nakamura, F. Nakahara, I. Moriguchi, T. Kudo, J. Phys. Chem. C, 111 (2007) 227.
133. M. Kruk, M. Jaroniec, Chem. Mater., 13 (2001) 3169.
134. J.C. Arnell, H.L. McDermott, Proceedings of The Second International Congress on Surface Activity, II, Butterworths, London, pp.113 (1957).
135. R.D. Levie, Electrochim. Acta, 8 (1963) 751.
136. L.G. Austin, E.G. Gagnon, J. Electrochem. Soc., 120 (1973) 251.
137. Y.R. Nian, H. Teng, J. Electroanal. Chem., 540 (2003) 119.
138. Y. Leon, C.A. Leon, L.R. Radovic, Interfacial chemistry and electrochemistry of carbon surfaces. Chemistry and Physics of Carbon, Vol 24, New York: Marcel Dekker, (1994) 213.
139. M.A. Montes-Moran, D. Suarez, J.A. Menendez, E. Fuente, Carbon 42 (2004) 1219.
140. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources, 157 (2006) 11.
141. V.V. Panic, R.M. Stevanovic, V.M. Jovanovic, A.B. Dekanski, J. Power Sources, 181 (2008) 186.
142. Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, Carbon, 49 (2011) 573.
143. Y.H. Ding, P. Zhang, Q. Zhuo, H.M. Ren, Z.M. Yang, Y. Jiang, Nanotechnology, 22 (2011) 215601.
144. K.P. Wang, H. Teng, Carbon, 44 (2006) 3218.
145. S. Yoon, J. Lee, T. Hyeon, S.M. Oh, J. Electrochem. Soc., 147 (2000) 2507.