| 研究生: |
陳逸臨 Chen, Yi-Ling |
|---|---|
| 論文名稱: |
建構單域抗體與奈米粒子之自組裝複合體以利口腔癌診斷與治療 Single-domain-antibody self-assembled nanoparticles for molecular imaging of oral cancers |
| 指導教授: |
謝達斌
Shieh, Dar-bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 口腔癌 、分子影像 、人類上皮細胞生長因子接受器 、單域抗體 |
| 外文關鍵詞: | Molecular Imaging, Single domain antibody, Oral cancer, Epidermal growth factor receptor |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據衛生署2007年統計資料顯示,口腔癌為台灣男性十大癌症死因排名第四位,且其盛行率有逐年攀升的趨勢,流行病學研究發現台灣地區口腔癌的成因與嚼食檳榔有顯著之關連性。經治療後之口腔癌的五年預後期一般而言不甚良好,存活率由29.8%到54.5%,尤其是晚期就醫的病患其預後更不理想。從過往研究中已知癌症之早期診斷有助於良好的臨床治療以及預後,現行的影像診斷技術,施行率雖然已經十分普及並且可以提供大部分的癌症診斷,然而對於非常初期的疾病情報資訊以及疾病影像仍有許多進步空間。分子影像診斷技術能夠在疾病的早期提供相關病灶的影像、顯示病灶的形成機制,對於臨床醫師或是基礎科學研究人員都是一個新興的影像領域。人類上皮細胞生長因子接受器(EGFR)以及其突變型(EGFR variant III)已知在許多腫瘤細胞過度表現,尤其是口腔癌細胞,並且嚴重影響到預後的效果,這些特殊的腫瘤細胞表面標記常被用來作為標定物以利疾病影像研究。經由M13嗜菌體表面展示技術篩選生產的擬人化單域抗體(single domain antibody, SdAb)可有效地獲得具有高表面標定性的癌症細胞,並且單域抗體具有良好的環境耐受性、組織滲透性以及低致免疫反應等等優點。尤其單域抗體最重要的優點就是其尺寸僅有一般IgG抗體的十分之一,而小尺寸的特性較不會顯著增加奈米粒子的流體動力學直徑。因此在本研究中,我們利用標定EGFR以及EGFR variant III的EG-2單域抗體接合磁性奈米粒子期許能夠作為癌症診斷的工具。首先,利用EG-2單域抗體篩選口腔癌細胞株以了解其專一性標定能力,此研究結果與利用市售anti-EGFR以及anti-EGFRvIII單株抗體所進行之西方墨點法結果一致,進而挑選出人類上皮細胞生長因子接受器表現量最高的KOSC3細胞株以及最低的人類正常口腔黏膜角化細胞進行後續的磁性奈米粒子接合實驗。由於EG-2單域抗體在羧端(C-terminus) 標記6-Histidine序列,為了使與磁性奈米粒子接合後的抗體仍具有方向性以及專一標定性,因此將與EG-2單域抗體接合之磁性奈米粒子在其表面修飾Ni-NTA結構,以利形成專一性Ni-NTA-¬¬Hexa Histidine自組裝。在此研究中,被選用的磁性奈米粒子有二:其一為負載釓(Gadolinium, Gd)的樹狀奈米粒子(dendrimer),為可以提供磁振造影T1影像之對比劑; 另一為四氧化三鐵奈米粒子(Fe3O4),為可以提供T2影像之對比劑。此兩種磁性奈米材料皆具有小尺寸的特性,直徑約為6到10奈米。測試兩者的細胞毒殺特性發現Gd-dendrimer的IC50為5x10-4M而Fe3O4為1x10-2M。此濃度亦能夠提供良好的磁振造影效果。進一步的研究顯示當EG-2 單域抗體接合上Gd-dendrimer,其鬆弛係數relaxivity1以及relaxivity2均低於尚未接合上EG-2單域抗體的Gd-dendrimer,但是兩者之鬆弛係數仍高於市售顯影劑Magnevist。此結果顯示不論是Gd-dendrimer或是EG-2單域抗體接合後的Gd-dendrimer,其顯影效果均較Magnevist優異。反觀之,研究顯示當EG-2單域抗體接合上Fe3O4,其鬆弛係數relaxivity1以及 relaxivity2較高於尚未接合上EG-2單域抗體的Fe3O4,顯示接合上單域抗體會提升Fe3O4的顯影效果。將接合上磁性奈米粒子Gd-dendrimer或是Fe3O4的EG-2單域抗體作用在KOSC3以及HNOK,且進行磁振造影分析。結果顯示此接合後的複合物仍然具有高度專一性標定且不論是在T1或是T2皆具有良好顯影的能力。在後續的研究中,我們將會針對奈米粒子與單域抗體之複合體在生物體內的標定造影進行深入的研究以利提升其作為臨床醫學應用上專一性標定對比劑的能力。
Oral squamous cell carcinoma (OSCC) is now ranked the forth-leading cause of cancer deaths in the Taiwanese male population owing to the prevalent betel quid chewing habit. Oral cancer has a general poor prognosis with a five-year survival rate ranging from 29.8%~54.5%, especially in late disease stages. Early diagnosis contributes to effective clinical treatment and better prognosis. Current imaging technology, however, usually failed to provide informative disease profile at the very early stage. Molecular imaging technology is an emerging field of research that has enabled insights of pathogenesis and has revealed true disease progress at their earliest possible stage. EGFR and EGFRvIII are selectively over expressed in many tumor cells including oral cancer with prognostic significance. Thus these unique surface markers are often selected as the targets for functional imaging of cancers. M13 phage display system engineered with humanized single domain antibody (SdAb) could effectively target unique cancer cell surface markers with high environmental tolerance and low immunogenic activity in vivo. The single domain antibody has a size only about one tenth of a normal IgG antibody and bioconjugation normally will not significantly increase the overall hydrodynamic size. Thus better tissue penetration could be achieved. The EG-2 SdAb targeting EGFR and EGFRvIII is selected to conjugate with nanoparticles in this study for cancer diagnostic imaging. We first screened EG-2 SdAb in our oral cancer cell line library for their endogenous expression of EGFR. The results were consistent with those from Western Blot using anti-EGFR and EGFRvIII antibodies. The positive and the negative clones were selected for in vitro experiments. For improved orientation control of EG-2, we proposed the idea of self-assembly on the particle surface. Ni-NTA was modified on the surface of magnetite particles through cross-linking between NTA and the nanoparticle surface. The poly-histidine at the C-terminal of the SdAb was known to interact with Ni-NTA specifically; thus, forming a self-assembled monolayer with high orientation control of the targeting moiety. Two types of nanoparticles with T1 (Gd3+ loaded dendrimer) and T2 (Fe3O4 nanoparticle) imaging contrast, respectively, were chosen for the following molecular imaging studies. Both have a small diameter of about 6-10 nm. The cytotoxicity of these materials revealed satisfactory results at concentrations below 5x10-4M and 1x10-2M for the dendrimer and the Fe3O4 nanoparticles, respectively. These concentration ranges were able to generate significant MRI contrasts. Conjugation of SdAb significantly increased r1 and r2 of the Fe3O4 nanoparticles, while decreased those of the dendrimers. EG-2 conjugated nanoparticles target EGFR over-expression cancer cells and presented a significant MRI contrast effect in vitro with positive contrast for the dendrimers and inversed contrast for the magnetite particles. Future in vivo molecular imaging is warranted to evaluate their potentials as nano-molecular imaging contrast agents for clinical applications.
1. Furusawa, J., et al. Initial CT findings in early tongue and oral floor cancer as predictors of late neck metastasis. Oral oncology (2008).
2. Rastogi, T., et al. Cancer incidence rates among South Asians in four geographic regions: India, Singapore, UK and US. International journal of epidemiology 37, 147-160 (2008).
3. Parkin, D.M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA: a cancer journal for clinicians 55, 74-108 (2005).
4. Soares, M., Salluh, J.I., Toscano, L. & Dias, F.L. Outcomes and prognostic factors in patients with head and neck cancer and severe acute illnesses. Intensive care medicine 33, 2009-2013 (2007).
5. de Visscher, J.G. [Treatment and prognosis of oral cancer]. Nederlands tijdschrift voor tandheelkunde 115, 192-198 (2008).
6. Dolmans, D.E., Fukumura, D. & Jain, R.K. Photodynamic therapy for cancer. Nature reviews 3, 380-387 (2003).
7. Yoo, B. & Pagel, M.D. An overview of responsive MRI contrast agents for molecular imaging. Front Biosci 13, 1733-1752 (2008).
8. Botnar, R.M. & Nagel, E. Structural and functional imaging by MRI. Basic research in cardiology 103, 152-160 (2008).
9. Waters, E.A. & Wickline, S.A. Contrast agents for MRI. Basic research in cardiology 103, 114-121 (2008).
10. Krause, J. SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder. Expert review of neurotherapeutics 8, 611-625 (2008).
11. Harvey, B.H., McEwen, B.S. & Stein, D.J. Neurobiology of antidepressant withdrawal: implications for the longitudinal outcome of depression. Biological psychiatry 54, 1105-1117 (2003).
12. Altamura, A.C., Bassetti, R., Cattaneo, E. & Vismara, S. Some biological correlates of drug resistance in schizophrenia: a multidimensional approach. World J Biol Psychiatry 6 Suppl 2, 23-30 (2005).
13. Dumeaux, V., et al. Gene expression analyses in breast cancer epidemiology: the Norwegian Women and Cancer postgenome cohort study. Breast Cancer Res 10, R13 (2008).
14. Hynes, N.E. & Schlange, T. Targeting ADAMS and ERBBs in lung cancer. Cancer cell 10, 7-11 (2006).
15. Wang, S.E., et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer cell 10, 25-38 (2006).
16. Issing, W.J., Wustrow, T.P. & Heppt, W.J. Oncogenes related to head and neck cancer. Anticancer research 13, 2541-2551 (1993).
17. Irish, J.C. & Bernstein, A. Oncogenes in head and neck cancer. The Laryngoscope 103, 42-52 (1993).
18. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2, 127-137 (2001).
19. Zhang, R., Tremblay, T.L., McDermid, A., Thibault, P. & Stanimirovic, D. Identification of differentially expressed proteins in human glioblastoma cell lines and tumors. Glia 42, 194-208 (2003).
20. Yasuda, T., et al. Peptides of type II collagen can induce the cleavage of type II collagen and aggrecan in articular cartilage. Matrix Biol 25, 419-429 (2006).
21. Rahbarizadeh, F., Rasaee, M.J., Forouzandeh Moghadam, M., Allameh, A.A. & Sadroddiny, E. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybridoma and hybridomics 23, 151-159 (2004).
22. Dumoulin, M., et al. Single-domain antibody fragments with high conformational stability. Protein Sci 11, 500-515 (2002).
23. Omidfar, K., et al. Production of a novel camel single-domain antibody specific for the type III mutant EGFR. Tumour Biol 25, 296-305 (2004).
24. Williams, D. Nanotechnology: a new look. Medical device technology 15, 9-10 (2004).
25. Tao, A.R., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small (Weinheim an der Bergstrasse, Germany) 4, 310-325 (2008).
26. Sajanlal, P.R., Sreeprasad, T.S., Nair, A.S. & Pradeep, T. Wires, plates, flowers, needles, and core-shells: diverse nanostructures of gold using polyaniline templates. Langmuir 24, 4607-4614 (2008).
27. Yu, M.K., et al. Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo. Angewandte Chemie (International ed (2008).
28. Laurent, S., et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews 108, 2064-2110 (2008).
29. Pittelkow, M., Brock-Nannestad, T., Moth-Poulsen, K. & Christensen, J.B. Chiral dendrimer encapsulated Pd and Rh nanoparticles. Chemical communications (Cambridge, England), 2358-2360 (2008).
30. Thomas, T.P., et al. Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe. Journal of biomedical optics 13, 014024 (2008).
31. Hu, M., et al. Gold nanoparticle-protein arrays improve resolution for cryo-electron microscopy. Journal of structural biology 161, 83-91 (2008).
32. Anker, J.N., et al. Biosensing with plasmonic nanosensors. Nature materials 7, 442-453 (2008).
33. de Fougerolles, A.R. Delivery vehicles for small interfering RNA in vivo. Human gene therapy 19, 125-132 (2008).
34. Li, S., Wang, A., Jiang, W. & Guan, Z. Pharmacokinetic characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles. BMC cancer 8, 103 (2008).
35. Joguparthi, V., Xiang, T.X. & Anderson, B.D. Liposome transport of hydrophobic drugs: gel phase lipid bilayer permeability and partitioning of the lactone form of a hydrophobic camptothecin, DB-67. Journal of pharmaceutical sciences 97, 400-420 (2008).
36. Ng, E.Y., Ng, W.K. & Chiam, S.S. Optimization of nanoparticle drug microcarrier on the pharmacokinetics of drug release: a preliminary study. Journal of medical systems 32, 85-92 (2008).
37. Zhao, L.N., Shen, H.B., Chen, W. & Zhu, L.Z. [A new method for isolating CD34(+) cells based on complex of magnetic nanoparticles and antibody]. Zhongguo shi yan xue ye xue za zhi / Zhongguo bing li sheng li xue hui = Journal of experimental hematology / Chinese Association of Pathophysiology 15, 537-541 (2007).
38. Gao, J., et al. Intracellular spatial control of fluorescent magnetic nanoparticles. Journal of the American Chemical Society 130, 3710-3711 (2008).
39. Jun, Y.W., Jang, J.T. & Cheon, J. Magnetic nanoparticle assisted molecular MR imaging. Advances in experimental medicine and biology 620, 85-106 (2007).
40. Zhou, W., et al. Drug-loaded, magnetic, hollow silica nanocomposites for nanomedicine. Nanomedicine 1, 233-237 (2005).
41. LAUTERBUR, P.C. Image Formation by Induced Local Interaction: Examples Employing Nuclear Magnetic Resonance. Nature 242, 2 (1973).
42. Gries, H. & Miklautz, H. Some physicochemical properties of the gadolinium-DTPA complex, a contrast agent for MRI. Physiological chemistry and physics and medical NMR 16, 105-112 (1984).
43. Weinmann, H.J., Brasch, R.C., Press, W.R. & Wesbey, G.E. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Ajr 142, 619-624 (1984).
44. Brushett, C., Qiu, B., Atalar, E. & Yang, X. High-resolution MRI of deep-seated atherosclerotic arteries using motexafin gadolinium. J Magn Reson Imaging 27, 246-250 (2008).
45. Yasuda, S., et al. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice. Journal of vascular research 45, 123-128 (2008).
46. Gambarota, G., et al. Characterisation of tumour vasculature in mouse brain by USPIO contrast-enhanced MRI. British journal of cancer 98, 1784-1789 (2008).
47. Matsumoto, Y. & Jasanoff, A. T(2) relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magnetic resonance imaging (2008).
48. Donahue, B.A., et al. Characterization of a DNA damage-recognition protein from mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin. Biochemistry 29, 5872-5880 (1990).
49. Kuyama, S., et al. Impact of HER2 gene and protein status on the treatment outcome of cisplatin-based chemoradiotherapy for locally advanced non-small cell lung cancer. J Thorac Oncol 3, 477-482 (2008).
50. Fraser, M., Bai, T. & Tsang, B.K. Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. International journal of cancer 122, 534-546 (2008).
51. Peluso, J.J., Liu, X., Saunders, M.M., Claffey, K.P. & Phoenix, K. Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1. The Journal of clinical endocrinology and metabolism 93, 1592-1599 (2008).
52. Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique (Wiley-Liss, New York, 1994).
53. Hay, R.J. Preservation of Cell Culture Stocks in Liquid Nitrogen, (TCA Manual 4, 1978).
54. Schroy, C.B. & Todd, P. A Simple Method for Freezing and Thawing Cultured Cells, (TCA Manual 2, 1976).
55. Kim, M.S., Li, S.L., Bertolami, C.N., Cherrick, H.M. & Park, N.H. State of p53, Rb and DCC tumor suppressor genes in human oral cancer cell lines. Anticancer research 13, 1405-1413 (1993).
56. Shieh, D.B., et al. Tissue expression of gelsolin in oral carcinogenesis progression and its clinicopathological implications. Oral oncology 42, 599-606 (2006).
57. Nagy, Z. & Mandi, Y. Natural killer cell mediated cytotoxicity against VERO target cells; the suppressive effect of pentoxifylline. Immunology letters 63, 121-123 (1998).
58. Zhang, J., et al. A pentavalent single-domain antibody approach to tumor antigen discovery and the development of novel proteomics reagents. Journal of molecular biology 341, 161-169 (2004).
59. Matsui, T., Ota, T., Ueda, Y., Tanino, M. & Odashima, S. Isolation of a highly metastatic cell line to lymph node in human oral squamous cell carcinoma by orthotopic implantation in nude mice. Oral oncology 34, 253-256 (1998).
60. Shieh, D.-B., et al. Aqueous nickel-nitrilotriacetate modified Fe3O4–NH3+ nanoparticles for protein purification and cell targeting. Nanotechnology 17, 4174–4182 (2006).
61. Iwamoto, R., Handa, K. & Mekada, E. Contact-dependent growth inhibition and apoptosis of epidermal growth factor (EGF) receptor-expressing cells by the membrane-anchored form of heparin-binding EGF-like growth factor. The Journal of biological chemistry 274, 25906-25912 (1999).
62. Liu, J., et al. Nanoparticles as image enhancing agents for ultrasonography. PHYSICS IN MEDICINE AND BIOLOGY 51, 2179–2189 (2006).
63. Richard, C., de Chermont Qle, M. & Scherman, D. Nanoparticles for imaging and tumor gene delivery. Tumori 94, 264-270 (2008).
64. Sun, C., Lee, J.S. & Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews 60, 1252-1265 (2008).
65. Kuo, P.H. Gadolinium-containing MRI contrast agents: important variations on a theme for NSF. J Am Coll Radiol 5, 29-35 (2008).
66. Temam, S., et al. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J Clin Oncol 25, 2164-2170 (2007).
67. Ohi, K., et al. [Expression of epidermal growth factor receptor in squamous cell carcinoma of the head and neck]. Nippon Jibiinkoka Gakkai kaiho 96, 2039-2043 (1993).
68. Brannon-Peppas, L. & Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Advanced drug delivery reviews 56, 1649-1659 (2004).
69. Boulikas, T. & Vougiouka, M. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review). Oncology reports 11, 559~595 (2004).
70. Babincov, M., Altanerov, V., Altaner, C., Bergemann, C. & Babinec, P. In vitro analysis of cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and electromagnetic hyperthermia. IEEE transactions on nanobioscience 7, 15-19 (2008).
71. Jeong, Y.I., et al. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. Journal of pharmaceutical sciences 97, 1268-1276 (2008).
72. Garnett, M.C. & Kallinteri, P. Nanomedicines and nanotoxicology: some physiological principles. Occupational medicine (Oxford, England) 56, 307-311 (2006).