簡易檢索 / 詳目顯示

研究生: 蘇炯輝
Su, Jyong-Huei
論文名稱: 速度變化對節律性視覺導引動作的影響: 皮質肌肉鍵結與動作表現之探討
The Speed Effect on Rhythmic Visual Tracking: An Investigation of Corticomuscular Coupling and Motor Performance
指導教授: 黃英修
Hwang, Ing-Shiou
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 66
中文關鍵詞: 皮質肌肉同調性施力震顫動作表現節律性動作速度
外文關鍵詞: rhythmic movement, motor performance, EEG-EMG coherence, force tremor, speed
相關次數: 點閱:113下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章
    引言
    節律性動作(例如行走等等)是和生物息息相關的動作活動。對經常使用上肢的靈長類而言,手部的節律性追蹤動作特別需要配合專注力的投入,是許多研究者探討的重要課題之一。然而在之前大部分的研究中,多數著重於行為表現。例如:動作的精準度;像是動作和目標的誤差值、以及時間差值等時序性上的影響。其中值得注意的是:依時序產生的節律性動作中,動作速度是一個影響動作表現與控制模式的重要參數。過去有文獻指出73,24,在追蹤動作頻率於一赫茲以上時,中樞控制機轉可能會從回饋控制轉變為前餽控制。同時,節律動作的速度改變對於探討中樞和周邊肌肉的功能性連結,是一個不可或缺的要素。
    速度參數在過去的動作研究中,被證實會影響動作行為的表現,10,50,67,96以及關聯到脊髓中樞反射25,48與大腦中樞對於節律動作調控的改變。現代影像學呈現技術指出,速度參數的調控可能與基底核、小腦以及大腦的前運動和主運動區有相關。5,37,63,77,87但是影像學或腦電圖研究只能反應大腦中樞興奮區域與興奮區域間彼此連結的強度,對於腦皮質與動作肌肉間的相關與其代表的功能性意義,過去研究甚少著墨。
    近年來隨著不同研究工具的發展,讓探討動作神經控制的方式有更多元的選擇。例如其中藉由量測力矩震顫8-12 Hz頻率的變化,來闡釋大腦中樞震盪的意義。19,71再者,有關腦部活動和肌肉收縮動作控制之間的功能性連結,近年來也藉由腦電、肌電訊號處理技術,發展出腦皮質-肌肉同調性(corticomuscular coherence)的定量估計。6,16,42,43,44,45,59,61腦皮質肌肉的同調性會和收縮力量大小、任務方式、中樞神經病變出現有不同的改變;6,16,42,43,44,45,59,61此外根據本研究室過去的發現,節律性動作造成皮質肌肉同調性的theta頻帶(4-8 Hz)有明顯的增加。27
    本實驗利用皮質-肌肉同調性(corticomuscular coherence) 與力矩震顫頻譜結構差異來反應中樞震盪的改變,藉以觀察在不同追蹤速度快慢下,大腦中樞如何調控肌肉控制策略以維持節律動作的表現;並配合力量訊號和目標引導訊號之交互相關分析與變異係數,來定量動作契合度與動作表現的一致性和穩定性。希冀能夠更進一步找出動作程式(motor program)的生理證據,更加深刻體認大腦對不同追蹤速度的控制模式。
    第二章
    方法
    本實驗同步量測在受試者分別進行三種速度不同的追蹤動作(0.5Hz,1.0Hz,2.0Hz)下,其腦電圖、肌電圖以及動作力量等生理電訊號。本實驗中有15名健康受試者,其中男性8位,女性7位;平均年齡為23.6±1.84 歲。本實驗量測硬體設備規格如下:(1)力量量測系統:多功能力矩量測器(Model: 9820P, AIKOH, JAPAN)、低通濾波器、 訊號放大器(Model: PS-30A-1, Entrain, UK)、數位示波器(Model: TDS2002, Tektronix, USA)等。(2)電生理訊號量測系統:重複性使用肌電圖電極(Silver/ Silver Chloride, 11mm, Model: F-E9-40-5, GRASS, USA)、肌電圖訊號交流放大器(Model: P511 series, GRASS-Telefactor, USA)等。(3)腦電圖量測系統:32頻道腦電圖放大器(NuAmp amplifier ;Neuroscan Inc. USA。收取系統與軟體如下:資料擷取卡(DAQ6221E, National Instrument, TX, USA)、以Labview 7.1(Laboratory Virtual Instrument Engineering Workbench, version7.1)來收取基本訊號、並以SCAN 4.3(Neuroscan, Inc. USA)來收取腦電圖訊號。最後以MatLab6.5(The Mathworks Inc. USA)進行訊號分析和處理,並以SPSS11.0(SPSS Inc. USA)來作為統計檢定用,顯著水準設定為p<0.05。
    本實驗讓受試者進行3種頻率速度變化的右手食指追蹤動作,其強度為25%的最大自主收縮力量。實驗進行中受試者姿勢為坐姿下,雙手旋前並以副木固定動作的右手於桌面上,保持手部於放鬆彎曲姿勢下,伸出食指動作。肌電圖黏貼位置為右手第一背側骨間肌肌腹上。受試者右手食指之近端指間關節靠於多功能力矩測量器上以進行動作。腦電圖電極由帽套連接於標準10-20系統下之數個電極(Fp1, Fp2, Fz, F3, F4, FCz, FC3, FC4, Cz, C3, C4, CPz, CP3, CP4, Pz, P3, P4)位置。實驗動作狀況包含三種不同速度下的追蹤動作,分別為0.5Hz、1.0Hz、以及2.0Hz等的速度變化,在基本25%的最大自主收縮用力下,以12.5%的最大自主收縮當作節律性變化大小已進行每段30秒,重複10回的動作和生理訊號收集。不同受試者的動作順序均以拉丁方格來平衡量測順序。
    本實驗於訊號處理方面,肌電圖會以6階Butterworth數位濾波器來去除掉60Hz的交流電干擾;腦電圖挑選最大相關於動作之C3,FC3電極作為分析,並以頻帶濾波0.1-50Hz濾波後來分析。腦電和肌電圖則以4階Butterworth數位濾波器來作各種不同速度下去除掉動作誤差的影響。並計算在C3腦電圖-肌電圖以及FC3腦電圖-肌電圖之同調性分析(coherence),求得同調性尖頻(perk coherent frequency)強度後以統計方法分析。而在對於動作表現的評量方面,利用變異係數分析(coefficient of variation)來估計動作力量的變異程度。並以比較實際產生力量與目標訊號之交互相關(cross correlation)以及目標訊號和產生力量訊號之時間延遲於在三種不同情況下,探討速度對於表現的影響。以及把動作力量以Welch方式之功率頻譜密度來作分析,以計算出功率頻譜下的尖頻頻率以及強度,來作為作力矩震顫之分析量測。本實驗以單因子重複量測變異數分析,以及LSD(least significant difference)法事後多重比較分析進行統計檢定。
    第三章
    結果
    在C3/FC3腦電圖與第一掌骨指間肌肌電圖在theta頻帶同調性分析顯示,在較慢的追蹤動作(0.5,1.0赫茲)沒有明顯的同調性。以單因子重複變異數統計分析與事後多重比較分析顯示C3和FC3腦電極與肌電圖之同調性在theta頻帶強度與追蹤頻率有關(p<0.001),且C3腦電圖與肌電圖的同調性強度在1.0與2.0赫茲的追蹤動作中,其於theta頻帶的尖頻強度明顯地比0.5赫茲的尖頻強度大(p<0.05);在FC3腦電極中,同樣發現到在theta頻帶的尖頻強度,隨著追蹤動作速度加快而增加(p<0.05)。腦電圖-肌電圖的同調性分析結果顯示,在不同的追蹤速度動作下,大腦皮質與神經肌肉活動的功能性聯繫,會隨著節律快慢而受到調節。
    變異數統計分析的結果顯示,在三種追蹤速度的情況下,其施力變異性程度有明顯差異(p<0.001)。事後檢定分析發現,在較慢的0.5以及1.0Hz追蹤頻率下,其變異性值較2.0Hz追蹤頻率大。表示在較慢的0.5Hz以及1.0Hz的狀況下,中樞依賴回饋控制來作誤差調整因而增加變異性。在2.0Hz的情況下,則傾向前餽控制來產生動作模式,於是動作一致性較高。
    施力與目標訊號之間的交互相關比較分析發現,在三種追蹤頻率下的相關係數以變異數統計分析顯示有明顯的差異(p<0.001)。事後比較分析顯示動作追蹤頻率越快的情況下,其相關係數越差,表示動作表現越差。同時變異數統計分析發現施力以及目標訊號時間延遲,在0.5 Hz以及1.0 Hz的情形下均為負值(0.5 Hz: -70.45±41.67 ms, 1.0 Hz :-21.30±139.60 ms),表示產生施力落後目標訊號,而在2.0Hz的情形下為正值(34.36±152.60 ms),表示產生施力超前目標訊號。
    施力訊號功率密度頻譜分析發現,於8-12Hz頻帶有明顯的震顫尖頻。重複變異數統計分析結果顯示:尖頻強度和動作速度有相關 (p<0.001)。事後分析結果發現在2.0Hz尖頻強度最大(0.210±0.050 N2),,而0.5Hz的尖頻強度(0.154±0.040 N2)最小(p<0.01)。除此之外,在頻帶尖頻頻率分佈上發現到和追蹤頻率有明顯的相關(p=0.001),越快的動作速度會產生越小尖頻頻率。(0.5 Hz: 9.32±0.63 Hz, 1.0 Hz: 8.86±0.03, 2.0Hz: 8.46±0.62 Hz) (p<0.01)。
    第四章
    討論
    本研究中在腦電圖-肌電圖同調性分析結果顯示,在C3和FC3兩個與執行動作相關的腦電圖訊號以及手部第一掌骨指間肌肌電圖之功能性連結分析中,於執行較快之2.0赫茲下追蹤動作時,均於同調性頻譜之theta頻帶(4-8赫茲)位置出現顯著尖頻,此一結果和之前同調性研究之結果大多出現於beta頻帶(15-35赫茲)或是gamma頻帶(40赫茲以上)有明顯之不同。此外,皮質肌肉同調性分析象徵肌肉動作控制機制,反映出任務特別化(task specific)的性質;由於腦電圖-肌電圖同調性隨追蹤動作頻率不同而改變,顯示大腦皮質間和周邊肌肉的功能性連結會在不同動作速度而改變,代表中樞控制策略的改變,在神經生理上也證實速度確為動作程式上重要的參數。
    本實驗中同時檢視動作行為表現包括:動作變異性與追蹤耦合程度等特徵,以瞭解不同追蹤頻率對動作控制的影響。結果發現施力曲線在較慢之0.5以及1.0赫茲下動作時,變異係數值有隨速度增加的趨勢;但是在最快之動作速度2.0赫茲下動作時,變異係數反為三者最低的狀況。可能原因為在較慢的動作中,也就是動作速度小於1.0赫茲的情形下,受試者不停使用視覺回饋修正追蹤活動的誤差,而誤差調整的過程會增加週期間手指追蹤動作的變異性;在大於1.0赫茲的動作情形下,目標動作過於快速變化,受試者無法有效率利用於回饋控制,便採取前餽控制而出現單純的動作模式,因誤差調整幾乎可以忽略,造成週期間追蹤動作相對變異性小。另一方面,以施力和目標訊號估計的追蹤耦合程度與時間差,耦合程度隨著動作速度加快而有下降的情形,可能原因為追蹤頻率增加時減少回饋校正機制的結果;而追蹤頻率增加也由施力落後目標動作的情形轉變成超前目標的狀況,可能原因為頻率增加傾向前餽控制效果,大腦預先以直覺產生節律動作,使得施力開始時間超前目標動作。
    施力震顫功率頻譜分析結果發現,隨著動作速度的增加,頻譜8-12赫茲的中樞震盪尖頻強度有增加的趨勢。可能原因為中樞由於周邊執行較為快速動作時,造成中樞活動強度增加的狀況;同時快速追蹤動作發生尖頻位置有往低頻方向移動的現象,推測可能由於動作控制模式傾向前饋控制時,大腦不同部位間訊息交換較為單純,無需快速訊息交換並處理相關動作訊息,產生所造成之往低頻移動機制。
    第五章
    結論
    本實驗主要的發現為:頻率快的正弦追蹤活動,在動作區與前動作區所產生皮質-肌肉同調性,較頻率慢的追蹤活動在theta頻帶有更明顯的同調性強度;頻率快的追蹤活動出現前饋控制的特徵;包括:低施力變異係數、施力訊號超前動作目標訊號且耦合程度較差:頻率慢的追蹤活動傾向回饋控制,與頻率快的追蹤活動之動作表現相反。因此,動作區與前額區所產生皮質-肌肉同調性theta頻帶可能與節律性活動的前饋控制有關。本實驗結果將可做為節律性動作控制理論之參考,提供訓練動作節律失調病患(例如巴金森氏症)的學理根據和參照。

    Abstract

    Introduction: Rhythmic tracking movement is critical to understanding neuromotor control of human. To enlighten the neurophysiological coupling during rhythmic tracking task, we conducted this study to analyze the cortico-muscular coherence, central oscillation changes, and outcome performance. Methods: Fifteen healthy subjects were recruited to complete rhythmic tracking movement of three different rates, by conducting load-varying isometric abduction contraction with visual feedback. The EMG of first dorsal interosseous, EEG(Fp1, Fp2, Fz, F3, F4, FCz, FC3, FC4, Cz, C3, C4, CPz, CP3, CP4, Pz, P3, P4), and force output of index finger abduction were recorded. Results: Significant theta burst (4-8 Hz) in the EEGFC3-EMG and EEGC3-EMG coherences was typically found during fast rhythmic tracking task (2.0 Hz) rather than in the slower tracking conditions. (0.5 and 1.0 Hz). The peak amplitude of central oscillation in terms of 8-12 Hz in power spectra density of force fluctuation increased with tracking speed, but peak frequencies conversely decreased with task speed. The task consistency expressed by coefficient of variation in force generation profile was largest in the 1.0Hz condition, but was smallest in the 2.0 Hz condition. The correlation coefficient of force output and target signal decreased with tracking speed, and force output lead target signal as tracking speed increased. Conclusion: The present study compared corticomuscular coupling and task performance of visual tracking tasks at different speeds. Tracking speed substantially influenced control mode of finger rhythmic movement, in the context of speed-specific alternations in task performance and EEG-EMG coherence, the physiological drive from cortex to end-effector.

    Page Abstract………………………………………………………………………………I Chinese Abstract…………………………………………………………………III Acknowledgements…………………………………………………………………XII Contents………………………………………………………………… ………XIII List of Tables……………………………………………………………………XVI List of Figures…………………………………………………………………XVII Abbreviations……………………………………………………… ……………XIX Chapter 1: Introduction……………………………………… …………………1 1.1 Rhythmic Finger Movement……………………………………………………1 1.2 Physiological Drives from Supraspinal Center to End Effectors.…4 1.3 Task Variations and Impacts on Motor Performance……………………7 1.4 Rationales………………………………………………………………………9 1.5 Hypotheses ……………………………………………………………………10 1.6 Importance of This Study …………………………………………………11 Chapter 2: Methods ………………………………………………………………12 2.1 Subjects ………………………………………………………………………12 2.2 Instrumentation and Experimental Settings……………………………13 2.2.1 Force Measuring Instruments……………………………………………15 2.2.2 Electrophysiological Signal Measuring Instruments………………16 2.2.3 Electroencephalography (EEG) Recording Instrument………………16 2.3 Experimental Procedures……………………………………………………19 2.3.1 Determination of Maximal Voluntary Contraction (MVC) …………19 2.3.2 Rhythmical Contraction of 0.5, 1.0 and 2.0 Hz……………………21 2.4 Data Processing………………………………………………………………23 2.4.1 EEG-EMG Coherence…………………………………………………………23 2.4.2 Variability of Behavioral Data ………………………………………24 2.4.3 Linear Relationship between Target and Torque Signals…………25 2.4.4 Force Tremor Analysis……………………………………………………26 2.5 Statistical Analysis ………………………………………………………27 Chapter 3: Results ………………………………………………………………28 3.1 EEG-EMG Coherence……………………………………………………………30 3.2 Coefficient of Variation (CV) Analysis for Task Performance……35 3.3 Linear Correlation between Target Signal and Developed Torque…36 3.4 Torque Fluctuation in Power Density Function ………………………38 Chapter 4: Discussions 4.1. Alternation in Control Mode of Visual Tracking due to Speed Effect ………………………………………………………………………………………42 4.2 Central Oscillation in Response to Changes in Control Mode: Force Tremor Analysis……………………………………………………………45 4.3 The Relationship of Feedback/Feedforward Control and Corticomuscular Coupling ………………………………………………………………………………………48 Chapter 5: Conclusion……………………………………………………………51 Chapter 6: References……………………………………………………………52

    Reference

    1. Allum JH, Dietz V, Freund HJ. Neuronal mechanisms un-derlying physiological tremor. J Neurophysiol 1978;41:557–571.
    2. Aschersleben G., Gehrke J., Prinz W.: Tapping with peripheral nerve block. a role for tactile feedback in the timing of movements. Exp Brain Res. 136(3): 331-339, 2001
    3. Brown TG. The intrinsic factors in the act of progression in the mammal. Proc Royal Soc. London 1911;84:308-319
    4. Bressler SL, Coppola R, Nakamura R. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 1993:366:153-156
    5. Blinkenberg M, Bonde C, Holm S, Svarer C, Andersen J, Paulson OB, and Law I. Rate dependence of regional cerebral activation during the performanceof a repetitive motor task: a PET study. J Cereb Blood Flow Metab 1996;16: 794–803.
    6. Baker SN, Oliver E, Lemon RN. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 1997;501:225-241
    7. Brooke JD, Cheng J, Collins DF, Mcllroy WE, Misiaszek JE, Staines WR. Sensori-sensory afferent conditioning with leg movement: gain control in spinal reflex and ascending paths. Prog Neurobiol 1997;51:393-421
    8. Brown P, Salenius S, Rothwell JC, Hari R. Cortical correlate of the Piper rhythm in humans. J Neurophysiol. 1998;80:2911-2917
    9. Brown P, Farmer SF, Halliday DM, Marsden JF, Rosenberg JR. Coherent cortical and muscle discharge in cortical myoclonus. Brain 1999;122:461-472
    10. Brown LE, Rosenbaum DA, Sainburg RL. Movement speed effects on limb position drift. Exp Brain Res. 2003;153:266-274
    11. Brown RAM, Walling SG, Milway JS, Harley CW. Locus ceruleus activation suppresses feedforward interneurons and reduces beta-gamma electroencephalogram frequencies while it enchaces theta frequencies in rat dentate gyrus. J Neurosci. 2005;25:1985-1991
    12. Carpenter RHS. Movements of the eyes. Pion, London, 1977
    13. Carlton LG. Visual processing time and the control of movement. In L. Proteau & D. Elliott (Eds.), Vision and motor control 1992;3-31
    14. Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 1995;489:917-924
    15. Coltz JD, Johnson MTV, Ebner TJ. Population code for tracking velocity based on cerebellar Purkinje cell simple spike firing in monkeys. Neurosci Lett. 2000;296:1-4
    16. Chen Y, Ding M, Scott Kelso JA. Task-related power and coherence changes in neuromagnetic activity during visuomotor coordination. Exp Brain Res. 2003;148:105-116
    17. Christou EA. Visual feedback attenuates force fluctuations induced by a stressor.
    Med Sci Sports Exerc. 2005 Dec;37(12):2126-33.
    18. Durbaba R, Taylor A, Manu CA, Buonajuti M. Stretch reflex instability compared in three different human muscles. Exp Brain Res. 2005 Jun;163(3):295-305. Epub 2005 Jan 15.
    19. Durbaba R, Taylor A, Manu CA, Buonajuti M. Stretch reflex instability compared in three different human muscles. Exp Brain Res. 2005 Jun;163(3):295-305.
    20. Enoka RM. Muscular control of a learned movement: The speed control system hypothesis. Exp Brain Res. 1983;51:135-145
    21. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ. Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern 1988;60:121-30
    22. Elble RJ, Koller WC. Tremor. Baltimore: Johns Hopkins University Press; 1990.
    23. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 1954;47:381-391
    24. Freund HJ. & Bundingen HJ. The relationship between speed and amplitude of the fastest voluntary contractions of human arm muscles. Exp Brain Res. 1978;31:1-12
    25. Flanders M, Herrmann U. Two components of muscle activation: scaling with the speed of arm movement. J Neurophysiol. 1992;67:931-43.
    26. Farmer SF.Rhythmicity, synchronization and binding in human and primate motor systems. J Physiol 1998;509:3-14
    27. Fang et al. Cortico-muscular coherence study during paced finger movements. Master thesis of NCKU 2005
    28. Gray CM, Singer W. Oscillatory responses in cat visual cortex exhibit inter-colummar synchronization which reflects global stimulus properties. Nature 1989;338:334-337
    29. Granger R, Wiebe SP, Taketani M, Lynch G. Distinct memory circuits composing the hippocampus in memory. Hippocampus 1996;6:567-578
    30. Grosse P, Cassidy MJ, Brown P. EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol. 2002 Oct;113(10):1523-31
    31. Hick WE. The discontinuous functioning of the human operator in pursuit tasks. Quart J Exp Physiol. 1948;1:36-51
    32. Halliday AM & Redfearn JWT. An analysis of the frequencies of finger tremor in healthy subjects. J Physiol. 1956;134:600-611
    33. Hurtado JM, Gray CM, Tamas LB, Sigvardt KA. Dynamics of tremor-related oscillations in the human golbus pallidus: a single case study. Proc Natl Acad Sci USA 1996;96:1674-1679
    34. Holliday DM, Conway BA, Farmer SF, Rosenberg JR. Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 1998b;241:5-8
    35. Hari R, Salenius S. Rhythmical corticomuscular communication. Neuroreport 1999;10:1-10
    36. Hellwig B, Häubler S, Lauk M, Guschlbauer B, Köster B, Kristeva-Feige R, Timmer J, Lücking CH. Tremor-correlated cortical activity detected by electroencephalography. Clin Neurophysiol 2000;111:806-809
    37. Hanakawa T, Ferguson J, Goldfine AM, Kansaku K, and Hallett M. Mechanisms of controlling speed for motor and nonmotor performance. Soc Neurosci Abstr 28, 2002.
    38. Hooper SL, Dicaprio RA. Crustacean motor pattern generator works. Neurosignals 2004;13:50-69
    39. Johnson MTV, Coltz JD, Ebner TJ. Encoding of target direction and speed during visual instruction and arm tracking in dorsal premotor and primary motor cortical neurons. Euro J Neurosci. 1999;11:4433-4445
    40. Jancke L., Loose R., Lutz K., Specht K., Shah NJ.: Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res. 10(1-2): 51-66, 2000
    41. Kugler PN, Turvey MT. Information, natural law, and the self-assembly of rhythmic movement. Hillsdale, NJ: L. Erlbaum Associates 1987
    42. Kilner JM, Baker SN, Salenius S, Jousmaki V, Hari R, Lemon RN. Task-dependent modulation of 15-30 Hz coherence between rectified EMGs from human hand and forearm muscles. J Physiol. 1999;516:559-70
    43. Kliner JM, Baker SN, Salenius S, Hari R, Lemon RN. Human cortical muscle coherence is directly related to specific motor parameters. J Neurosci 2000;20:8838-8845
    44. Kristeva-Feige R, Fritsch C, Timmer J, Lucking CH. Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task. Clin Neurophysiol 2002;113:124-131
    45. Kliner JM, Salenius S, Baker SN, Jackson A, Hari R, Lemon RN. Task-dependent modulations of cortical oscillatory activity in human subjects during a bimanual precision grip task. Neuroimage 2003;18:67-73
    46. Kouzaki M, Shinohara M, Masani K, Fukunaga T. Force fluctuations are modulated by alternate muscle activity of knee extensor synergists during low-level sustained contraction. J Appl Physiol. 2004 Dec;97(6):2121-31.
    47. Lee D, Port NL, Georogopoulous AP. Manual interception of moving targets. II On-line control of overlapping submovements. Exp Brain Res. 1997;116:421-433
    48. Larsen B, Voigt M. Changes in the gain of the soleus H-reflex with changes in the motor recruitment level and/or movement speed. Eur J Appl Physiol. 2004;93:19-29
    49. Lengyel M, Erdi P. Theta-modulated feedforward network generates rate and phase coded firing in the Entorhino-Hippocampal system. IEEE Trans Neural Netw. 2004;15:1092-109
    50. Miller S, Weider B. Effect of speed adaptation on performance in a self-paced tracking task. Percept Mot Skills. 1975;40:167-70.
    51. Meyer DE, Smith JE, Wright CE. Models of the speed and accuracy of aimed movements. Psychol Rev 1982;89:449-482
    52. Miall RC, Weir DJ, Stein JF. Manual tracking of visual targets by trained monkeys. Beh Brain Res. 1986;20:185-201
    53. Milner TE, Ijaz MM. The effect of accuracy constraints on three-dimensional movement kinematics. Neuroscience 1990;35:365-374
    54. Massey JT, Lurito JT, Pellizzer G, Georogopoulous AP. Three-dimensional drawings in isometric conditions: relation between geometry and kinematics. Exp Brain Res 1992;88:685-690
    55. Murthy VN, Fetz EE. Oscillatory activity in sensorimotor coetex of awake monkeys: synchronization of local field potentials and relation to behavior. J Neurophysiol 1996a;76:3949-3967
    56. Murthy VN, Fetz EE. Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol 1996b;76:3968-3982
    57. McAuley JH, Rothwell JC, Marsden CD. Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing.
    Exp Brain Res. 1997 May;114(3):525-41.
    58. Mima T, Gerloff C, Steger J, Hallett M. Frequency-coding of motor control system-coherence and phase estimation between cortical rhythm and motoneuronal firing in humans. Soc Neurosci Abstracts 1998a;24:1768
    59. Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallett M. Task-related coherence and task-related spectral power changes during sequential finger movements. Electroen Clin Neurophysiol. 1998;109:50-62
    60. Marsden JF, Farmer SF, Halliday DM, Rosenberg JR, Brown P. The unilateral and bilateral control of motor unit pairs in the first dorsal interosseous and paraspinal muscles in man. J Physiol. 1999;521:553-564
    61. Mima T, Simpkins N, Oluwatimilehin T, Hallett M. Force level modulate human cortical oscillatory activities. Neurosci Lett 1999;275:77-80
    62. Mima T, Hallett M. Corticomuscular coherence: a review. J Clin Neurophysiol. 1999;16(6):501-511
    63. Moran DW and Schwartz AB. Motor cortical representation of speed and direction during reaching. J Neurophysiol 1999;82: 2676–2692.
    64. Marsden JF, Ashby P, Rothwell JC, Brown P. Phase relationship between cortical and muscle oscillations in cortical myoclonus: electrocorticographic assessment in a single case. Clin Neurophysiol 2000b,111:2170-2174
    65. Marsden JF, Limousin-Dowsey P, Ashby P, Pollak P, Brown P. Subthalamic nucleus, sensorimotor cortex and muscle interreationships in Parkinson’s disease. Brain 2001b;124:378-388
    66. Mima T, Toma K, Koshy B, Hallet M. Coherence between cortical and muscular activities after subcortical stroke. Stroke 2001b;32:2597-2601
    67. Messier J, Adamovich S, Berkinblit M, Tunik T, Poizner H. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject. Exp Brain Res. 2003;150:399-416
    68. Noble M, Fitts PM, Warren CE. The frequency response of skilled subjects in a pursuit tracking task. J Exp Physiol. 1954;49:549-259
    69. Novak KE, Miller LE, Houk JC. Kinematic properties of rapid hand movements in a knob turning task. Exp Brain Res. 2000;132:419-433
    70. Novak KE, Miller LE, Houk JC. The use of overlapping submovements in the control of rapid hand movements. Exp Brain Res. 2002;144:351-364
    71. Oda S, Kida N. Neuromuscular fatigue during maximal concurrent hand grip and elbow flexion or extension. J Electromyogr Kinesiol. 2001 Aug;11(4):281-9
    72. Piper HE. Electrophysiologic menschlicher Muskeln, Berlin: Springer, 1912
    73. Pew RW. Human perceptual-motor performance. In: Kantowitz BH, editor. Human information processing: tutorials in performance and cognition. Hillsdale, NJL Lawrence Erbaum Associates; 1974; 1-39
    74. Paillard J. Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: A reappraisal. Cand J Physiol and Pharmacol 1996;74:401-417
    75. Pearson, KG. Common principles of motor control in vertebrates and invertebrates. Ann Rev Neurosci. 2004;13:50-69
    76. Robson JG. The effect of loading upon the frequency of muscle tremor. J Physiol. (Lond.) 1959;149:29-30
    77. Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, and Hyde JS. Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 1996;16: 1250–1254.
    78. Roelfsema PR, Engel AK, KÖnig P, Singer W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 1997;385:157-161
    79. Riddle CN, Baker SN. Manipulation of peripherial neural feedback loops alters human corticomuscular coherence. J Physiol. 2005;566:625-639
    80. Roitman AV, Pasalar S, Johnson MTV, Ebner TJ. Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci. 2005;25:9244-9257
    81. Shibasaki H, Kuroiwa Y. Electroencephalographic correlates of myoclonus. Electroenceph clin Neurophysiol 1975;39:455-463
    82. Smith WM, & Bowen K. The effects of delayed and displaced visual feedback on motor control. J Mot Behav. 1980;12:91-101
    83. Soechting JF. &Lacquaniti F. Invariant characteristics of a pointing movement in man. J Neurosci. 1981;7:710-720
    84. Sanes JN, Donoghue JP. Oscillations in local field potentials of the primate motor cortex. Proc Natl Acad Sci USA 1993;90:4470-4474
    85. Semmler JG, Nordstrom MA. Influence of handedness on motor unit discharge properties and force tremor. Exp Brain Res. 1995;104(1):115-25.
    86. Salenius S, Salmerin R, Neuper C, Pfurtscheller G, Hari R. Human cortical 40-Hz rhythm is closely related to EMG rhythmicity. Neurosci Lett 1996;213:75-77
    87. Schluag G, Sanes JN, Thangaraj V, Darby DG, and J‥ancke L. Cerebral activation covaries with movement rate. Neuroreport 7: 879–883, 1996.
    88. Salenius S, Portin K, Kajola M, Salmelin R, Hari R. Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol 1997;77:3401-3405
    89. Slifikin AB, Newell KM. Noise, information transmission and force variability. J Exp Psychol: Human Percep Perf 1999;25:837-851
    90. Slifkin AB, Vaillancourt DE, Newell KM. Intermittency in the control of continuous force production. J Neurophsiol. 2000;84:1708-1718
    91. Salenuis S, Avikainen S, Kaakkola S, Hari R, Brown P. Defective cortical drive to muscle in Parkinson’s disease and its improvement with levodopa. Brain 2002;125:491-500
    92. Sosnoff JJ, Vaillancourt DE, Larsson L, Newell KM. Coherence of EMG activity and single motor unit discharge patterns in human rhythmical force production. Behav Brain Res 2005;158:301-310
    93. Sosnoff JJ, Newell KM. Intermittency of visual information and the frequency of rhythmical force production. J Mot Behav. 2005;37:325-334
    94. Turner RS, Grafton ST, Votaw JR, Delong MR, Hoffman JM. Motor subcircuits mediating the control of movement velocity: A PET study. J Neurophysiol 1998;80:2162-2176
    95. Turton A, Lemon RN. The contribution of fast corticospinal input to the voluntary activation of proximal muscles in normal subjects and in stroke patients. Exp Brain Res. 1999;129:559-572
    96. Thomas JS, Corcos DM, Hasan Z. Effect of movement speed on limb segment motions for reaching from a standing position. Exp Brain Res. 2003;148:377-387
    97. Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST. Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol. 2003;90:3958-3966.
    98. Takanokura M, Sakamoto K. Neuromuscular control of physiological tremor during elastic load. Med Sci Monit. 2005 Apr;11(4):CR143-52.
    99. Viviani P. & Terzuolo C. Trajectory determines movement dynamics. Neurosci. 1982;7:431-437
    100. Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, Ribary U, Llinas R. Central motor loop oscillations in Parkinsonian tremor revealed by magnetoencephalography. Neurology. 1996;46:1359-1370
    101. Wollaston WH. On the duration of muscle action. Phil Trans R Soc Lond 1810;1-5
    102. Woodworth RC. The accuracy of voluntary movements. Psychol Rev Mono Suppl 1899;3:1-114
    103. Wessberg J, Vallbo AB. Pulsatile motor output in human finger movements is not dependent on the stretch reflex. J Physiol (Lond) 1996;493:895–908
    104. Weeks RA., Honda M., Catalan MJ., Hallett M.: Comparison of auditory, somatosensory, and visually instructed and internally generated finger movements: a PET study. Neuroimage. 14(1 Pt 1): 219-230, 2001
    105. Zhou BH, Baratta RV, Solomonow M. Open-loop tracking performance of a limb joint controlled by random, periodic, and abrupt electrical stimulation inputs to the antagonist muscle pair. IEEE Trans BME. 1998;45:511-519
    106. Zehr EP, Hesketh KL, Chua R. Differential regulation of cutaneous and H-reflexes during lag cycling in humans. J Neurophysiol 2001;85:1178-1185
    107. Zehr EP, Collins DF, Frigon A, Hoogenboom N. Neural control of rhythmic human arm movement: phase dependence and task modulation of Hoffmann reflexes in forearm muscles. J Neurophysiol. 2003;89:12-21
    108. Zehr EP, Carroll TJ, Chua R, Collins DF, Frigon A, Haridas C, Hundza SR, Kido A. Possible contributions of spinal CPG activity to rhythmic human arm movement. Can J Physiol Pharmacol 2004;82:556-568

    下載圖示 校內:2007-07-12公開
    校外:2007-07-12公開
    QR CODE