簡易檢索 / 詳目顯示

研究生: 鍾郁音
Chung, Yu-Yin
論文名稱: 甲脒鹽酸鹽及甲醯肼分子在二氧化鈦粉末表面上的吸附與反應
Adsorption and Reactions of Formamidine Hydrochloride and Formic hydrazide on Powdered TiO2
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 二氧化鈦甲脒鹽酸鹽甲醯肼傅立葉轉換紅外光譜儀
外文關鍵詞: TiO2, formamidine hydrochloride, formic hydrazide, FTIR
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用傅立葉轉換紅外光譜儀(FT-IR)研究甲脒鹽酸鹽(Formamidine hydrochloride)與甲醯肼(Formic hydrazide)兩種化合物在二氧化鈦表面上的吸附與反應。
    甲脒鹽酸鹽遇水會分解並以HCOO(a)與NH3(a)的形式吸附於二氧化鈦表面上,加熱至250 oC時開始生成CO(g),若有氧的環境下則大約在300 oC時會形成CO2。未分解的甲脒鹽酸鹽分子以N―Ti的形式吸附於二氧化鈦表面上,在有氧的環境下照光,5分鐘左右即會開始生成HCOO、CO2與NO3-。
    甲醯肼在二氧化鈦表面上主要以O―Ti形式吸附於二氧化鈦表面上,吸水後有部分分子反應形成HCOO及NH3吸附於表面上。此分子加熱至大約200 oC時產生CO2,250 oC時NO3-及含CN的物種。有氧環境下加熱則會生成HCOO、N2O(a)、CO及CO2。在照光反應中,大約20分鐘時產生CO(a),而照光完進行加熱大約250 oC時會形成NCO(a)。若有氧參與照光反應,大約1分鐘時即開始出現CO(a)與HCOO(a),並且促成CO反應成CO2,照光完加熱則同樣於250 oC時生成NCO。

    Adsorption and Reactions of Formamidine Hydrochloride and Formic hydrazide on Powdered TiO2

    Yu-Yin Chung
    Jong-Liang Lin
    Department of Chemistry, National Cheng Kung University

    SUMMARY

    Fourier transform infrared spectroscopy has been employed to study the thermal and photochemical reactions of formamidine hydrochloride and formic hydrazide on powdered TiO2, with the aid of density functional theory calculations. The calculation shows that formamidine hydrochloride is adsorbed on anatase TiO2(101) with the interactions of HN---Ti and N–H---O. Formamidine hydrochloride can decompose into HCOO aqnd NH3 on powdered TiO2 at 35 oC. In the photoreaction, formamidine hydrochloride decomposes to form HCOO, CO2 and NO3- on TiO2. Formic hydrazide is adsorbed on TiO2(101) via C=O---Ti and N–H---O. Adsorption of formic hydrazide on TiO2 (35 oC) can form NH3, HC(=O)NH and/or HCOO. Thermal decomposition of formic hydrazide on TiO2 at higher temperatures generates CO2, N2O(a) and NO3-. Photocatalytic reaction of formic hydrazide on TiO2 generates CO. Heating the surface subjected to the phototoirradiation produces a surface species of NCO.

    Key words: TiO2, formamidine hydrochloride, formic hydrazide, FTIR

    INTRODUCTION

    In the past, precise determination for the surface reaction mechanisms of N-containing heterocyclic compounds, using infrared spectroscopy, often faced challenges, because it is difficult to correctly identify the surface intermediates on the basis of the detected similar peak frequencies. Therefore, it would be helpful to study simple, smaller molecules with similar structure to the N-containing heterocyclic compounds, for example, formamidine hydrochloride and formic hydrazide. They are used as precursors for organic synthesis and haven’t been studied on TiO2. In this research, we investigated the adsorption, thermal reactions, and photoreactions of formamidine hydrochloride and formic hydrazide on TiO2.

    MATERIALS AND METHODS

    Formamidine hydrochloride (98%, Alfa), formic hydrazide (98%, Aldrich), acetone (99.98%, Honeywell), oxygen (99.998%, Matheson) and TiO2 powder (Degussa P25, ~50 m2/g) were used in this study. The TiO2 powder was dispersed in water/acetone solution and then sprayed onto a tungsten mesh. The obtained TiO2/W was placed inside the IR cell and heated to 450 oC under vacuum for 24 h. The temperature of the TiO2/W was measured by a K-type thermocouple spotwelded on the tungsten mesh. Before each experiments, the TiO2/W was heated to 350 oC for 30 mins in the presence of O2 and then maintained at 450 oC under vacuum for 2 h to remove surface impurity. After the heating, 5.0 Torr O2 was introduced into the cell as the TiO2/W was cooled to 70 oC and the cell was evacuated for gas dosing when the temperature reached 35 oC. The IR cell with two KBr windows for IR transmission down to ~400 cm-1 was connected to a gas manifold maintained by a turbomolecular pump at a base pressure of ~1×10-7 Torr. A capacitance manometer and thermocouple gauge were used to monitored the pressure of IR cell. In the photochemistry study, both the UV and IR beams were 45o to the normal of the TiO2/W. The light source was a combination of a 350 W Hg arc lamp, a water filter and a ~ 325 nm band-pass filter. IR spectra were obtained with a 4 cm-1 resolution by Bruker FT-IR spectrometer with an MCT detector.

    RESULTS AND DISCUSSION

    After depositing formamidine hydrochloride and H2O on TiO2/W, the infrared spectrum taken under vacuum shows the infrared absorptions at 1180, 1360, 1380, 1412, 1554, 1621, 1668, 1718, 2954 and 2873 cm-1. According to previously reported literatures these peaks can be attributed to surface species as follows: 1180 cm-1 to NH3; 1360, 1380, 1412, 1554, 2954, 2873 to HCOO(a); 1621 cm-1 to H2O. In addition, for the TiO2 surface directly incontact with formamidine hydrochloride vapor only, we have measured an infrared spectrum with peaks at 1172, 1241, 1288, 1363, 1375, 1444, 1558, 1621, 1680 and 2975 cm-1. The 1680 cm-1 peak may be assigned to N=C–N asymmetry stretching. In the photocatalytic reaction, there are no obvious spectra after the photoirridiation at 325 nm changes in the absence of oxygen. But, in the presence of oxygen, the N=C–N bond is broken, generating CO2(g) (2349 cm-1), HCOO(a) (1353 and 1558 cm-1) and NO3- (1251 and 1436 cm-1). The proposed reactions of formamidine hydrochloride on TiO2 are shown in Scheme 1.

    Scheme 1

    Adsorption and reactions of formamidine hydrochloride on TiO2.

    The infrared spectrum of formic hydrazide/TiO2 shows the absorptions at 1160, 1245, 1360, 1380, 1438, 1473, 1565, 1595, 1641, 1672, 2732, 2873, 2973, 3263, 3384 and 3573 cm-1. Among them, the set of 1380, 1565, 2732, 2829 and 2873 cm-1 may be attributed to HCOO(a); 1160 and 1595 cm-1 to NH3(a). Scheme 2 shows the proposed catalytic reactions of formic hydrazide on TiO2. In the thermal reactions, enhanced absorptions at 1438, 2281, 2310, 2348 cm-1 are measured, suggesting the formation of NO3-, CN-containing species and CO2(g). In the presence or O2, the absorptions at 1355, 1380 and 2231 cm-1 at 200 oC are due to HCOO(a) and N2O and the 2117 cm-1 at 250 oC may be due to CO(a). In the photocatalytic reaction, a new peak at 2189 cm-1 is found to grow with time, but decreases when the TiO2/W is heated to 100 oC after the photoirradition. We surmise that it is from photogenerated CO. The 2214 cm-1 peak measured at 250 oC can be ascribed to NCO(a). In the presence of oxygen, the CO(a) is further photooxidized to CO2(g).


    Scheme 2

    Adsorption and reactions of formic hydrazide on TiO2.

    CONCLUSION

    The photoreaction of formamidine hydrochloride on TiO2 forms CO2(g), HCOO(ad) and NO3- in the presence of oxygen. In the thermal reactions of formic hydrazide on TiO2 without O2, the products are found to be CO2, NO3- and CN-containing species, but HCOO(ad), N2O(ad), CO(ad) and CO2(g) are generated in the presence of oxygen. In the photocatalytic reaction of formic hydrazide, CO(ad) is found but desorption when the TiO2/W is heated to 100 oC after the photoirradition. At 250 oC, a new product ascribed to NCO(a) is found on TiO2. In the presence of oxygen, the CO(a) is further photooxidized to CO2(g).

    目錄 第一章 緒論 1 1.1 表面科學 1 1.1.1 表面科學的歷史 1 1.1.2 表面的定義 2 1.1.3 表面催化 2 1.1.4 表面吸附 3 1.2 二氧化鈦晶體結構 4 1.2.1 二氧化鈦表面 5 1.3 二氧化鈦光催化 6 1.3.1 二氧化鈦光催化原理 6 1.3.2 二氧化鈦光催化的應用與檢測 7 1.4 研究動機 8 第二章 實驗系統與方法 11 2.1 概述 11 2.1.1 儀器 12 2.1.2 藥品 13 2.2 傅立葉轉換紅外光譜系統 14 2.2.1 紅外光源 14 2.2.2 偵測器 14 2.3 紫外光源 15 2.4 真空系統 15 2.4.1 壓力測量 15 2.4.2 紅外光譜反應槽 16 2.5 二氧化鈦/鎢網的製備 18 2.5.1 二氧化鈦/鎢網在反應槽的擺放位相 18 2.5.2 二氧化鈦/鎢網的前處理 19 2.6 藥品製備與處理 19 2.7 表面理論計算模型 19 第三章 結果與討論 21 3.1 甲脒鹽酸鹽在二氧化鈦表面上的吸附與反應 21 3.1.1 甲脒鹽酸鹽在二氧化鈦表面上的吸附 21 3.1.2 真空環境下甲脒鹽酸鹽水溶液在二氧化鈦表面上的熱反應 23 3.1.3 密閉環境下甲脒鹽酸鹽水溶液在二氧化鈦表面上的熱反應 24 3.1.4 甲脒鹽酸鹽在二氧化鈦表面上的光反應 25 3.2 甲醯肼在二氧化鈦表面上的吸附與反應 26 3.2.1 甲醯肼在二氧化鈦表面上的吸附 26 3.2.2 真空環境下甲醯肼在二氧化鈦表面上的熱反應 27 3.2.3 密閉環境下甲醯肼在二氧化鈦表面上的熱反應 28 3.2.4 甲醯肼在二氧化鈦表面上的光反應 29 第四章 結論 55 第五章 參考資料 57 圖目錄 圖1-1 表面催化步驟示意圖。 3 圖1-2 二氧化鈦的晶體結構(a)金紅石(b)銳鈦礦(c)板鈦礦。 4 圖1-3 二氧化鈦的理論計算模型(a)anatase(101) (b)rutile(110)。 6 圖1-4 半導體的光催化步驟。 7 圖1-5 1H-1,2,4-Triazole的光催化反應機構。 9 圖2-1 實驗系統架構示意圖。 11 圖2-22 不鏽鋼紅外光譜反應槽之設計。 17 圖2-3 二氧化鈦/鎢網在紅外光譜反應槽的擺放位相。 18 圖2-4 二氧化鈦的週期性表面模型。 20 圖3-1 不同噴灑次數的甲脒鹽酸鹽/二氧化鈦紅外光譜圖。 33 圖3-2 SDBS中關於甲脒鹽酸鹽的IR光譜。 34 圖3-3 甲脒鹽酸鹽蒸氣在常溫下吸附於二氧化鈦表面上的紅外吸收光譜圖。 35 圖3-4 甲脒鹽酸鹽水溶液/二氧化鈦於真空下加熱至指定溫度後測得紅外光譜吸收圖。 36 圖3-5 甲脒鹽酸鹽水溶液/二氧化鈦於真空下加熱至指定溫度後,回溫至45 oC測得之紅外光譜吸收圖。 37 圖3-6 甲脒鹽酸鹽水溶液/二氧化鈦於密閉環境下加熱至指定溫度後,回溫至45 oC測得之紅外光譜吸收圖。 38 圖3-7 甲脒鹽酸鹽水溶液/二氧化鈦於密閉環有氧境下加熱至指定溫度後,回溫至45 oC測得紅外光譜吸收圖。 39 圖3-8 甲脒鹽酸鹽/二氧化鈦於密閉環境下連續照光3小時的紅外吸收光譜圖。 40 圖3-9 甲脒鹽酸鹽/二氧化鈦於密閉有氧環境下連續照光3小時的紅外吸收光譜圖。 41 圖3-10 甲脒鹽酸鹽/二氧化鈦於密閉有氧環境下連續照光3小時的紅外吸收光譜相減圖。 42 圖3-11 甲醯肼蒸氣於常溫下吸附於二氧化鈦表面上的紅外吸收光譜圖。 43 圖3-12 SDBS中甲醯肼的IR光譜圖。 44 圖3-13 (a)CH3CONH2在二氧化鈦表面上的吸附與熱反應之紅外光譜圖及(b)CH3CN與CH3CONH2在二氧化鈦表面上照光催化的反應機構。 45 圖3-14 甲醯肼/二氧化鈦於真空下加熱至指定溫度後測得紅外光譜吸收圖。 46 圖3-15 甲醯肼/二氧化鈦於真空下加熱至指定溫度後,回溫至45 oC測得之紅外光譜吸收圖。 47 圖3-16 甲醯肼/二氧化鈦於密閉環境下加熱至指定溫度後,回溫至45 oC測得之紅外光譜吸收圖。 48 圖3-17 甲醯肼/二氧化鈦於密閉有氧環境下加熱至指定溫度後,回溫至45 oC測得之紅外光譜吸收圖。 49 圖3-18 (a)N2O在不同相及表面的振動頻率及(b)N2O/TiO2的吸附與熱反應之紅外光譜圖。 50 圖3-19 甲醯肼/二氧化鈦於密閉環境下連續照光3小時的紅外吸收光譜圖。 51 圖3-20 甲醯肼/二氧化鈦於密閉環境下連續照光3小時後抽真空10分鐘,再於真空下加熱至指定溫度後,回溫至45 oC時測得的紅外光譜吸收圖。 52 圖3-21 甲醯肼/二氧化鈦於密閉有氧環境下連續照光3小時的紅外吸收光譜圖。 53 圖3-22 甲醯肼/二氧化鈦於密閉有氧環境下連續照光3小時後抽真空10分鐘,再於真空下加熱至指定溫度後,回溫至45 oC時測得的紅外光譜吸收圖。 54 Scheme 1-1 含氮與氧的雜環分子。 9 Scheme 1-2 甲脒鹽酸鹽的結構 10 Scheme 1-3 甲醯肼的結構 10 Scheme 4-1 甲脒鹽酸鹽在二氧化鈦表面上的吸附與反應。 56 Scheme 4-2 甲醯肼在二氧化鈦表面上的吸附與反應。 56   表目錄 表3-1 甲脒鹽酸鹽單分子及吸附在TiO2 anatase(101)與rutile(110)上的吸附結構、振動頻率與振動模式。 31 表3-2 甲醯肼單分子及吸附在TiO2 anatase(101)上的吸附結構、振動頻率與振動模式。 32

    [1] Mertens, J. Oil on Troubled Waters: Benjamin Franklin and the Honor of Dutch Seamen. Physics Today 2006, 59, 36.
    [2] Zecchina, A.; Califano, S. The Development of Catalysis: A History of Key Processes and Personas in Catalytic Science and Technology; John Wiley & Sons: Hoboken, 2017.
    [3] Myers, R. L. The 100 Most Important Chemical Compounds: a Reference Guide; ABC-CLIO: Santa Barbara, 2007.
    [4] Davis, M. E.; Davis, R. J. Fundamentals of Chemical Reaction Engineering; Dover Publications: Mineola, 2003.
    [5] Appl, M. Ammonia, 2. Production Processes. Ullmann's Encyclopedia of Industrial Chemistry, 7th ed; John Wiley & Sons: Hoboken, 2010.
    [6] Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT Press: Cambridge, 2004.
    [7] Langmuir, I. Surface Chemistry. Chemical Reviews 1933, 13, 147–191.
    [8] Ertl, G. Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture). Angew. Chem. Int. Ed. 2008, 48, 3524.
    [9] Vickerman, J. C. Surface Analysis: The Principal Techniques, 2nd ed.; John Wiley & Sons: Hoboken, 2009.
    [10] Stubbe, J.; van der Donk, W. A. Protein Radicals in Enzyme Catalysis. Chem. Rev. 1998, 98, 705–762.
    [11] Moldovan, M.; Palacios, M.; Gomez, M.; Morrison, G.; Rauch, S.; McLeod, C.; Ma, R.; Caroli, S.; Alimonti, A.; Petrucci, F. Environmental Risk of Particulate and Soluble Platinum Group Elements Released from Gasoline and Diesel Engine Catalytic Converters. Sci. Total Environ. 2002, 296, 199–208.
    [12] Liu, Z.; Chu, B.; Zhai, X.; Jin, Y.; Cheng, Y. Total Methanation of Syngas to Synthetic Natural Gas Over Ni Catalyst in a Micro-channel Reactor. Fuel 2012, 95, 599–605.
    [13] Piumetti, M. A brief history of the science of catalysis - I: From the Early Concepts to Single-site Heterogeneous Catalysts. Chimica oggi 2014, 32, 22–27.
    [14] Mo, S.; Ching, W. Y. Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, Anatase, and Brookite. Phys. Rev. B 1995, 51, 13023–13031.
    [15] Augustynski, J. The Role of the Surface Intermediates in the Photoelectrochemical Behaviour of Anatase and Rutile TiO2. Electrochim. Acta 1993, 38, 43–46.
    [16] Landmann, M.; Rauls, E.; Schmidt, W. G. The Electronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2. J. Phys.: Condens. Matter 2012, 24, 195503.
    [17] Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P.; Watson, G. W.; Keal, T. W.; Sherwood, P.; Walsh, A.; Sokol, A. A. Band Alignment of Rutile and Anatase TiO2. Nat. Mater. 2013, 12, 798–801.
    [18] Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. J. Phys. Chem. B 2005, 109, 977–980.
    [19] Barnard, A. S.; Curtiss, L. A. Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano Lett. 2005, 5, 1261–1266.
    [20] Wu, N.; Wang, J.; Tafen, D. N.; Wang, H.; Zheng, J. G.; Lewis, J. P.; Liu, X.; Leonard, S. S.; Manivannan, A. Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2(101) Nanobelts. J. Am. Chem. Soc. 2010, 132, 6679–6685.
    [21] Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and Energetics of Stoichiometric TiO2 Anatase Surfaces. Phys. Rev. B 2001, 63, 155409.
    [22] Perron, H.; Domain, C.; Roques, J.; Drot, R.; Simoni, E.; Catalette, H. Optimisation of Accurate Rutile TiO2 (110), (100), (101) and (001) Surface Models from Periodic DFT Calculations. Theor. Chem. Acco. 2007, 117, 565–574.
    [23] Li, H.; Guo, Y.; Robertson, J. Calculation of TiO2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional. J. Phys. Chem. C 2015, 119, 18160–18166.
    [24] Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38.
    [25] Pichat, P.; Disdier, J.; Hoang-Van, C.; Mas, D.; Goutailler, G.; Gaysse, C. Purification/deodorization of Indoor Air and Gaseous Effluents by TiO2 Photocatalysis. Catalysis Today 2000, 63, 363–369.
    [26] Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang, S.; Zhang, K.-Q.; Lai, Y.; Lin, Z. A Review of TiO2 Nanostructured Catalysts for Sustainable H2 Generation. Int. J. Hydrog. Energy 2017, 42, 8418–8449.
    [27] Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9, 191.
    [28] Ma, D.; Liu, A.; Li, S.; Lu, C.; Chen, C. TiO2 Photocatalysis for C–C Bond Formation. Catal. Sci. Technol. 2018, 8, 2030–2045.
    [29] Elhage, A.; Lanterna, A. E.; Scaiano, J. C. Tunable Photocatalytic Activity of Palladium-Decorated TiO2: Non-Hydrogen-Mediated Hydrogenation or Isomerization of Benzyl-Substituted Alkenes. ACS Catal. 2017, 71, 250–255.
    [30] Xiang, Y.; Wang, X.; Zhang, X.; Hou, H.; Dai, K.; Huang, Q.; Chen, H. Enhanced Visible Light Photocatalytic Activity of TiO2 Assisted by Organic Semiconductors: a Structure Optimization Strategy of Conjugated Polymers. J. Mater. Chem. A 2018, 6, 153–159.
    [31] Lazar, M. A.; Daoud, W. A. Achieving Selectivity in TiO2-based Photocatalysis. RSC Adv. 2013, 3, 4130–4140.
    [32] Hegedűs, P.; Szabó-Bárdos, E.; Horváth, O.; Horváth, K.; Hajós, P. TiO2-Mediated Photocatalytic Mineralization of a Non-Ionic Detergent: Comparison and Combination with Other Advanced Oxidation Procedures. Materials 2015, 8, 231–250.
    [33] Waki, K.; Zhao, J.; Horikoshi, S.; Watanabe, N.; Hidaka, H. Photooxidation Mechanism of Nitrogen-containing Compounds at TiO2/H2O Interfaces: an Experimental and Theoretical Examination of Hydrazine Derivatives. Chemosphere 2000, 41, 337–343.
    [34] Raskó, J.; Kecskés, T.; Kiss, J. Adsorption and Reaction of Formaldehyde on TiO2-supported Rh Catalysts Studied by FTIR and Mass Spectrometry. J. Catal. 2004, 226, 183–191.
    [35] Li, M.; Yin, J.-J. Wamer, W. G.; Lo, Y. M. Mechanistic Characterization of Titanium Dioxide Nanoparticle-induced Toxicity Using Electron Spin Resonance. J. Food Drug Anal. 2014, 22, 76–85.
    [36] Chuang, C.-C.; Chen, C.-C.; Lin, J.-L. Photochemistry of Methanol and Methoxy Groups Adsorbed on Powdered TiO2. J. Phys. Chem. B 1999, 103, 2439–2444.
    [37] Chien, T.-E.; Li, K.-L.; Lin, P.-Y.; Lin, J.-L. Infrared Spectroscopic Study of the Adsorption Forms of Cyanuric Acid and Cyanuric Chloride on TiO2. Langmuir 2016, 32, 5306–5313.
    [38] Lin, Y.-C.; Chien, T.-E.; Li, K.-L.; Lin, J.-L. Comparison of the Thermal and Photochemical Reaction Pathways of Melamine on TiO2. J. Phys. Chem. C 2015, 119, 8645–8651.
    [39] Watanabe, N.; Horikoshi, S.; Kawasaki, A.; Hidaka, H.; Serpone, N. Formation of Refractory Ring-Expanded Triazine Intermediates during the Photocatalyzed Mineralization of the Endocrine Disruptor Amitrole and Related Triazole Derivatives at UV-Irradiated TiO2/H2O Interfaces. Environ. Sci. Technol. 2005, 39, 2320–2326.
    [40] Dines, T. J.; MacGregor, L. D.; Rochester, C. H. The Surface Acidity of Oxides Probed by IR Spectroscopy of Adsorbed Diazines. Phys. Chem. Chem. Phys. 2001, 3, 2676–2685.
    [41] Novais, H. M.; Steenken, S. Reactions of Oxidizing Radicals with 4,6-Dihydroxypyrimidines as Model Compounds for Uracil, Thymine, and Cytosine. J. Phys. Chem. 1987, 91, 426–433.
    [42] Zong, Y.-X.; Wang, J.-K.; Yue, G.-R.; Feng, L.; Song, Z.-E.; Song, H.; Han, Y.-Q. Traceless Liquid-phase Synthesis of 3-Alkylamino-4,5-disubstituted-1,2,4-triazoles on Polyethylene Glycol (PEG). Tetrahedron Lett. 2005, 46, 5139–5141.
    [43] Ohkubo, M.; Kawamoto, H.; Ohno, T.; Nakano, M.; Morishima, H. Synthesis of NB-506, A New Anticancer Agent. Tetrahedron 1997, 53, 585–592.
    [44] Woźniczka, M.; Szajdzinska-Pietek, E.; Jezierska, J.; Pasternak, B.; Gądek-Sobczyńska, J.; Kufelnicki, A. The Complexing Properties of Oxalodihydrazide, Acethydrazide and Formic Hydrazide with Cu(II) in Aqueous Solution. Inorganica Chim. Acta 2017, 455, 659–665.
    [45] Norton, P. HgCdTe Infrared Detectors. Opto-Electronics Review 2002, 10, 159–174.
    [46] Fan, J.; Yates, J. T.; Infrared Study of the Oxidation of Hexafluoropropene on TiO2. J. Phys. Chem. 1994, 98, 10621–10627
    [47] Rusu, C. N.; Yates, J. T. Photochemistry of NO Chemisorbed on TiO2(110) and TiO2 Powders. J. Phys. Chem. B 2000, 104, 1729–1737
    [48] AIST: Spectral Database for Organic Compounds, SDBS. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=3958 (accessed Jul 15, 2019).
    [49] Liao, L.-F.; Wu, W.-C.; Chen, C.-Y.; Lin, J.-L. Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO2 and Effect of Adsorbed Water on the Rates of Formate and Formic Acid Photooxidation. J. Phys. Chem. B 2001, 105, 7678–7685.
    [50] Su, C.; Yeh, J.-C.; Chen, C.-C.; Lin, J.-C.; Lin, J.-L. Study of Adsorption and Reactions of Methyl Iodide on TiO2. J. Catal. 2000, 194, 45–54.
    [51] Manuel, J.; Amores, G.; Escribano, V. S.; Ramis, G.; Busca, G. An FT-IR Study of Ammonia Adsorption and Oxidation over Anatase-supported Metal Oxides. Appl. Catal. B 1997, 13, 45–58.
    [52] Liao, L.-F.; Lien, C.-F.; Shieh, D.-L.; Chen, M.-T.; Lin J.-L. FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2. J. Phys. Chem. B 2002, 106, 11240–11245.
    [53] Lin, J.-L.; Lin, Y.-C.; Lin, B.-C.; Lai, P.-C.; Chien, T.-E.; Li, S.-H.; Lin, Y.-F. Adsorption and Reactions on TiO2: Comparison of N,N-Dimethylformamide and Dimethylamine. J. Phys. Chem. C 2014, 118, 20291―20297.
    [54] Larrubia, M. A.; Ramis, G.; Busca, G. An FT-IR Study of the Adsorption and Oxidation of N-containing Compounds over Fe2O3-TiO2 SCR catalysts. Appl. Catal. B 2001, 30, 101–110.
    [55] Ramis, G.; Busca, G.; Lorenzelli, V.; Forzatti, P. Fourier Transform Infrared Study of the Adsorption and Coadsorption of Nitric Oxide, Nitrogen Dioxide and Ammonia on TiO2 Anatase. Appl. Calat. 1990, 64, 243–257.
    [56] AIST: Spectral Database for Organic Compounds, SDBS. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=13728 (accessed Jul 15, 2019).
    [57] Chuang, C.-C.; Wu, W.-C.; Lee, M.-X.; Lin, J.-L. Adsorption and Photochemistry of CH3CN and CH3CONH2 on Powdered TiO2. Phys. Chem. Chem. Phys.¬ 2000, 2, 3877–3882.
    [58] Chuang, C.-C.; Shiu, J.-S.; Lin, J.-L. Interaction of Hydrazine and Ammonia with TiO2. Phys. Chem. Chem. Phys. 2000, 2, 2629–2633.
    [59] Rusu, C. N.; Yates, J. T. N2O Adsorption and Photochemistry on High Area TiO2 Powder. J. Phys. Chem. B 2001, 105, 2596–2603.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE