| 研究生: |
邱家豪 Hao, Chiu-Chia |
|---|---|
| 論文名稱: |
PtSnRu/C 陽極觸媒在直接乙醇燃料電池之電化學行為 The Electrochemical Behaviors of PtSnRu/C in Ethanol Fuel Cell |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 直接乙醇燃料電池 、白金三元合金 、白金錫釕合金 、乙醇燃氧化產物分析 |
| 外文關鍵詞: | direct ethanol fuel cell, platinum ternary alloy, platinum-tin-ruthenium alloy, ethanol product analysis |
| 相關次數: | 點閱:68 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要提升直接乙醇燃料電池的陽極觸媒的活性。目前對乙醇氧化活性最高的觸媒為白金錫合金,本實驗探討白金錫雙元合金中的原子比例、合成方法、適合的第三金屬及三元合金各成分比例對氧化乙醇的影響來尋找適合乙醇燃料電池的陽極觸媒。
雙元合金中,只有Pt-Sn/C在循環伏安法觀察到在0.4V (vs. Ag/AgCl) 下有明顯的峰電流,其餘金屬的第一峰電流主要都在0.7V (vs. Ag/AgCl),而本實驗也藉由紅外光譜證實Pt-Sn/C在0.4V (vs. Ag/AgCl) 下的反應為乙醇氧化成乙醛。其中白金錫的原子比在1:1時的活性最佳(37.2 mA/mg-Pt)。
本研究除了採用含浸還原法也探討了以金屬置換法,以錫金屬當作還原劑,直接將白金還原在錫表面上,讓白金有更大的表面積。結果顯示在半電池測試下以金屬置換法得到的白金錫觸媒活性高於含浸還原法,但全電池分析時,金屬置換法提升活性的效果有限。
比較釕、鈀、鎳當作三元合金觸媒的第三金屬,釕較適合,主因是白金釕合金的If/Ib值較大,顯示釕的加入可增強觸媒抗毒化的能力。研究三元合金不同比例下的活性後發現,Pt:Sn:Ru = 1:1:0.5時對乙醇氧化的活性最大,且全電池產物分析中也證明三元合金可略為提升乙醇氧化到二氧化碳的比例。
This study focuses on activity improvement for the anode catalysts in direct ethanol fuel cells. According to literatures, the catalyst with the highest activity for ethanol oxidation is platinum-tin alloy. This research investigated the effects of atomic ratio of platinum to tin, synthesis methods, appropriate third metal and atomic ratio for ternary alloy on the catalyst activity which was used to determine. the best anode catalyst for direct ethanol fuel cell.
For the binary alloy catalysts,only Pt-Sn/C gave a clear peak current at 0.4V (vs. Ag / AgCl) in a cyclic voltammogram, and the other metals only gave the peak current in 0.7V (vs. Ag / AgCl). The infrared spectrum confirmed that the reaction of Pt-Sn/C at 0.4V (vs. Ag / AgCl) is due to the oxidation of ethanol to acetaldehyde . The atomic ratio of Pt/Sn 1:1 had the highest activity.
This study not only focused on the impregnation reduction method but also utilized displacement method. Tin reduced platinum precursor on the tin surface to provide greater surface area on platinum , as confirmed in half cell test. The catalysts formed by displacement method have higher activity(39.4 mA/mg Pt) than impregnation reduction method. But in single cell test, the enhancement of catalysts activity was not significant.
Comparing to palladium and nickel, ruthenium is more suitable as the third metal for ternary alloy catalysts, because the If/Ib of the platinum-ruthenium alloy was larger than those of others, due to the enhancement of anti-poisoning of the catalyst. And this study found that the ternary alloy with atomic ratio of Pt: Sn: Ru = 1:1:0.5 gavethe highest activity. The product analysis from a single cell also proved that ternary alloy increased the oxidation of ethanol to carbon dioxide.
1. 楊志忠、林頌恩、暐文成, 燃料電池發展現況. 科學發展, 367期
2. http://www.fuelcelltoday.com, FuelCellToday.
3. J. Giner, C.H., Model of a Hydrogen-Air Fuel Cell with Alkaline Electrolyte. J. Electrochem. Soc., Vol. 116, pp. 1124-1130, 1969.
4. 鄭煜騰,萬瑞霙,林修正, 酸性燃料電池的製成研究. 能源季刊, 1995. 第二十五卷,第四期,161頁.
5. Stonehart, O., Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC). J. Appl. Electrochem., 1992. Vol. 22, pp. 995-1001.
6. E. A. Ticianelli, C.R.D., A. Redondo, S. Srinivasan, Methods to Advance Technology of Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc, 1998. Vol. 135, pp. 2209-2214
7. 李國霖, 熔融碳酸鹽燃料電池的研發. 能源季刊, 1997. 第二十四卷,第四期,57頁.
8. Biyikoglu, A., Review of Proton Exchange Membrane Fuel Cell Models, 1998. Int. J. Hydrogen Energy, Vol. 30, pp. 1181-1212.
9. A. J. Appleby, F.R.F., Fuel Cell Handbook, 1989. Van Nostrand Reinhold, pp. 15-16.
10. 鄭煜騰,鄭耀宗, 質子交換膜型燃料電池的製造技術. 能源季刊,第二十七卷,第二期,118頁, 1997.
11. 13. A. J. Appleby, F.R.F., Fuel Cell Handbook. Fuel Cell Handbook, 1989.
12. 湯顯整, 燃料電池應用與產業發展現況. 綠基通訊, 2012. PP2-5.
13. 鄭耀宗, 燃料電池與電動車. 科學發展, 367期, pp20-25, 2003.
14. F. DELIME, J.M.L.G., C. LAMY, Optimization of platinum dispersion in Pt±PEMelectrodes: application to the electrooxidation of ethanol. JOURNAL OF APPLIED ELECTROCHEMISTRY,28,pp 27-35.
15. 张继炎, 朱.陈., 直接乙醇燃料电池的研究现状及前景. 电源技术.
16. F. VIGIER, C.C., A. PERRARD2, E.M. BELGSIR1 and C. LAMY, Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry, 34, pp 439–446, 2004.
17. Zhou, W., Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2003. 46(2): p. 273-285.
18. dos Anjos, D.M., et al., Electrocatalytic oxidation of ethanol on Pt–Mo bimetallic electrodes in acid medium. Journal of Applied Electrochemistry, 2006. 36(12): p. 1391-1397.
19. Colmati, F., E. Antolini, and E.R. Gonalez, Ethanol Oxidation on Carbon Supported Pt-Sn Electrocatalysts Prepared by Reduction with Formic Acid. Journal of The Electrochemical Society, 2007. 154(1): p. B39.
20. Zhaolin Liua, Xing Yi Linga, Xiaodi Sua, Jim Yang Leea,b, Leong Ming Gan, Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources, 2005. 149: p. 1-7.
21. Jonathan Mann, N.Y., and Andrew B. Bocarsly, Characterization and Analysis of New Catalysts for a Direct Ethanol Fuel Cell. Langmuir 2006. 22: p. 10432-10436.
22. Zhen-Bo Wang, Ge-Ping Yin, Jian Zhang, Ying-Chao Sun, Peng-Fei Shi, Investigation of ethanol electrooxidation on a Pt–Ru–Ni/C catalyst for a direct ethanol fuel cell. Journal of Power Sources, 2006. 160(1): p. 37-43.
23. J. Ribeiroa, D.M. dos Anjosa, K.B. Kokoha, C. Coutanceaua, J.-M. L´P. Olivi , A.R. de Andradeb, G. Tremiliosi-Filho , Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochimica Acta, 2007. 52(24): p. 6997-7006.
24. Antolini, E., Catalysts for direct ethanol fuel cells. Journal of Power Sources, 2007. 170(1): p. 1-12.
25. Thiago Lopes, Ermete Antolini, Flavio Colmati, Ernesto R. Gonzalez, Carbon supported Pt–Co (3:1) alloy as improved cathode electrocatalyst for direct ethanol fuel cells. Journal of Power Sources, 2007. 164(1): p. 111-114.
26. Lopes, T., E. Antolini, and E. Gonzalez, Carbon supported Pt–Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells. International Journal of Hydrogen Energy, 2008. 33(20): p. 5563-5570.
27. W.J. Zhoua,W.Z. Lia, S.Q. Songa, Z.H. Zhoua, L.H. Jiang a, G.Q. Suna,Q. Xina, K. Poulianitis b, S. Kontoub, P. Tsiakaras, Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. Journal of Power Sources, 2004. 131(1-2): p. 217-223.
28. 宋树芹, 直接乙醇燃料电池:乙醇渗透和MEA制备及其对DEFC单池性能的影响. 中国科学院大连化学物理研究所碩士論文, 2004.
29. Tricoli, V., Proton and Methanol Transport in Poly(perfluorosulfonate) Membranes Containing Cs+ and H+ Cations. J. Electrochem. Soc., Vol. 145, No. 11, 1998.
30. S. Rousseau, C. Coutanceau∗, C. Lamy, J.-M. L´ger, Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. Journal of Power Sources, 2006. 158(1): p. 18-24.
31. Shuqin Songa,Weijiang Zhoua, Zhenxing Lianga, Rui Caib, Gongquan Suna,Qin Xina,b,1, Vaios Stergiopoulosc, Panagiotis Tsiakaras , The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs. Applied Catalysis B: Environmental, 2005. 55(1): p. 65-72.
32. ,辛勤, 宋.梁.周.孙., 的阻甲醇渗透研究进展. 电 池, 2004. Vo1.34,No.4.
33. Young-Min Kim, Kyung-Won Park, Jong-Ho Choi, In-Su Park, Yung-Eun Sung, A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochemistry Communications, 2003. 5(7): p. 571-574.
34. F. Finsterwalder a, G. Hambitzerb, Proton conductive thin films prepared byplasma polymerization. Journal of Membrane Science, 2001. 185: p. 105–124.
35. KD Kreuer, A.F., M Ise, M Spaeth, J Maier, Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochimica Acta, 1998. 43: p. 1281-1288.
36. Z Wei, S.W., B Yi, J Liu, L Chen, WJ Zhou, W Li, Influence of electrode structure on the performance of a direct methanol fuel cell. ournal of Power souces, 2002. 106: p. 364-369.
37. P. Argyropoulos, K.S. and W.M.T. , Dynamic response of the direct methanol fuel cell under variable load conditions. journal of Power Sources 2000. 87: p. 153–161.
38. Almir Oliveira Neto∗, Ricardo R. Dias, Marcelo M. Tusi, Marcelo Linardi, Estevam V. Spinac´., Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. Journal of Power Sources, 2007. 166(1): p. 87-91.
39. C. Lamy, E.M.B., J-M. Léger, Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC). Journal of Applied Electrochemistry, 2001. Volume 31: p. 799-809.
40. J.M. Perez *, B.B., F. Hahn, A. Aldaz * and C. Lamy, “In situ” infrared reflectance spectroscopic study of the earlystages of ethanol adsorption at a platinum electrode in acid medium. J. Electroanal. Ckem., 1989. 262: p. 251-261.
41. H. Hitmia, E.M.B., J.-M. Légera, C. Lamya, R.O. Leznab, A KINETIC ANALYSIS OF THE ELECTRO-OXIDATION OF ETHANOL AT A PLATINUM ELECTRODE IN ACID MEDIUM. Electrochimica Acta, 1994. 39: p. 407–415.
42. PASTOR, T.I.a.E., A DEMS AND FTir SPECTROSCOPIC INVESTIGATION OF ADSORBED ETHANOL ON POLYCRYSTALLINE PLATINUM Electrochimica Acta, 1994. 39: p. 531-537.
43. Wang, H., Z. Jusys, and R.J. Behm, Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study. Journal of Power Sources, 2006. 154(2): p. 351-359.
44. Vigier, F., et al., On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. Journal of Electroanalytical Chemistry, 2004. 563(1): p. 81-89.
45. Vigier, F., et al., Electrocatalysis for the direct alcohol fuel cell. Topics in Catalysis, 2006. 40(1-4): p. 111-121.
46. Srinivasan, Y.W.R.a.a.S., Mass Transport Phenomena in Proton Exchange Membrane. journal of The Electrochemical Society, 1994. 141(8): p. 2089-2096.
47. Verbrugge, D.M.B.a.M.W., A Mathematical Model of the Solid-Polymer-Electrolyte. journal of electrochemical society, 1992. 139(9): p. 2477-2491.
48. Thomas A. Zawodzinski, J., Charles Derouin, Susan Radzinski, Ruth J. Sherman, and T.E.S. Van T. Smith, and Shimshon Gottesfeld, water uptake by and transport through. J. Electrochem. Soc., 1993. 140(4): p. 1041-1047
49. Junbom Kim, a.S.-M.L., and Supramaniam Srinivasan, Modeling of Proton Exchange Membrane Fuel Cell. journal of The Electrochemical Society, 1995. 142(8): p. 2670-2674.
50. Allen J.Bard, L.R.F., electrochemical methods fundamentals and applications. JOHN WILEY & SONS,INC 2001: p. 27.
51. Newman, J.S., Electrochemical systems. Prentice-Hall, Inc, 1991: p. 380.
52. A.J. Bard, L.R.F., Electrochemical methods fundamentals and applications. Wiley, New York, 2001.
53. C. M. Brett, A.m.o.b., Electrochemistry-Principles, Methods, and Applications. Oxford, New York, 1993: p. 405.
54. C. M. Brett, A.m.o.b., Electrochemistry-Principles, methods, and appoications. Oxford, New York, 1993: p. 234.