| 研究生: |
吳泳翰 Wu, Yung-Han |
|---|---|
| 論文名稱: |
除蟲菊Tefluthrin在腦下垂體前葉腫瘤細胞及分泌促性腺激素釋放素細胞的離子作用機制 Ionic Mechanism of Actions of Tefluthrin, a Pyrethroid Pesticide, in Pituitary Tumor (GH3) Cells and GnRH-Secreting (GT1-7) Cells |
| 指導教授: |
吳勝男
Wu, Sheng-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 除蟲菊精 、分泌促性腺激素釋放素細胞 、L型鈣離子電流 、動作電流 、腦下垂體前葉腫瘤細胞 、鈉離子電流 |
| 外文關鍵詞: | Tefluthrin, action current, GH3 cells, L-type Ca2+ current, GT1-7 cells, Na+ current, Pyrethroid |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Tefluthrin (Tef)是一種合成的第一型除蟲菊,它被用來控制許多種昆蟲的數量。由於全世界使用除蟲菊的用量增加,我們需要更加了解人類暴露在除蟲菊下的作用機制。過去許多研究指出Tef以及其結構相關的化合物會影響多種離子通道的活性。然而,Tef對於內分泌或神經內分泌細胞中離子電流的電生理特性卻很少被研究。因此,在這個研究中,將會探討Tef對於GH3以及GT1-7細胞的離子電流的作用機制。實驗中,我們發現在GH3細胞中給予10 M的Tef可以增加電壓依賴鈉離子電流的大小,並且伴隨著鈉離子電流的不活化以及去活化時間常數的增加。此外,Tef會使鈉離子電流的電流-電壓 (I-V)曲線往較負的電位偏移。此化合物也會增加持續性鈉離子電流的大小,並讓持續性鈉離子電流的I-V 曲線偏移到較負的電位。然而,Tef卻會減少L型電壓依賴鈣離子電流的大小。另外這個化合物會些微抑制向外的鉀離子電流,不過並不改變巨型電導鈣離子活化鉀離子通道的活性。在cell-attached voltage-clamp的實驗中,Tef會增加GH3和GT1-7細胞的自發性動作電流的大小以及頻率。之後我們利用從實驗獲得的參數建構出以Hodgkin-Huxley為基準的GH3細胞模型。將實驗中測得Tef對於離子電流的影響套用到細胞模型當中來模擬Tef對於GH3細胞的電活性改變。在模擬的情況中,我們發現Tef會增加自發性動作電位的頻率以及增加泌乳激素的分泌。總結而言,我們的研究顯示了Tef或其他除蟲菊可能透過對離子電流的影響而使活體中內分泌或神經內分泌細胞的功能受到改變。
Tefluthrin (Tef), a synthetic type-I pyrethroid, was used to control a wide range of insects. Since global use of pyrethroids has increased, a rise in acute pyrethroid exposures in humans demands a more complete understanding of their mechanism of actions. Previous studies showed that Tef and its structurally-related compounds affected the activity of different ion channels. However, no detailed electrophysiological characterization of the effects of Tef on ion currents in endocrine or neuroendocrine cells has been investigated. In this study, the mechanism of actions through which Tef interacts with ion currents was thus studied in GH3 cells and GT1-7 neurons. Application of Tef (10 M) enhanced the amplitude of voltage-gated Na+ currents (INa), accompanied by an increase in the time constants of inactivation and deactivation in GH3 cells. The current-voltage (I-V) relationship of INa was shifted to more negative potentials in the presence of this compound. It also increased the amplitude of persistent sodium current (INa,P), together with a negative shift of the I-V relationship. However, Tef reduced the amplitude of L-type Ca2+ current (ICa,L). This compound slightly inhibited K+ outward current (IK), but it did not alter the activity of large-conductance Ca2+-activated K+ (BKCa) channels. Under cell-attached voltage-clamp recordings, Tef increased amplitude and frequency of spontaneous action currents in GH3 and GT1-7 cells. A GH3 cell model was constructed using Hodgkin-Huxley parameters obtained from experiments. We incorporated the effects of Tef on ion currents to our model to simulate its effects on the electric activity of GH3 cells. The simulation indicates that Tef can increase the frequency of spontaneous action potentials and prolactin secretion level. Taken together, our study reveals that the effects of Tef or other pyrethroids on ion currents account for the mechanisms how they influence endocrine or neuroendocrine function in vivo.
Bertram R, Sherman. A calcium-based phantom bursting model for pancreatic islets. Bull Math Biol. 66:1313–1344. (2004)
Borg JJ, Hancox JC, Zhang H, Spencer CI, Li H, Kozlowski RZ. Differential pharmacology of the cardiac anionic background current IAB. Eur J Pharmacol. 569:163-170. (2007)
Burr SA, Ray DE. Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicol Sci. 77:341-346. (2004)
Cassano G, Bellantuono V, Ardizzone C and Lippe C. Pyrethroid stimulation of ion transport across frog skin. Environ Toxicol Chem. 22:1330-1334. (2003)
Chay TR, Keizer J. Minimal model for membrane oscillations in the pancreatic -cell. Biophys J. 42:181–190. (1983)
Chen JF, Chen HY, Liu R, He J, Song L, Bian Q, Xu L, Zhou J, Xiao H, Dai GD, Chang HC, Wang XR. Effects of fenvalerate on progesterone production in cultured rat granulosa cells. Reprod Toxicol. 20:195–202. (2005)
Chiesa N, Rosati B, Arcangeli A, Olivotto M, Wanke E. A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol. 501:313–308. (1997)
Choi JS, Soderlund DM. Structure-activity relationships for the action of 11 pyrethroid insecticides on rat NaV1.8 sodium channels expressed in Xenopus oocytes. Toxicol Appl Pharmacol. 211:233-244. (2006)
Clark JM, Symington SB. Pyrethroid action on calcium channels: neurotoxicological implications. Invert Neurosci. 7:3-16. (2007)
Clark JM, Symington SB. Neurotoxic implications of the agonistic action of CS-syndrome pyrethroids on the N-type CaV2.2 calcium channel. Pest Manag Sci. 64:628-638. (2008)
Costantin JL, Charles AC. Spontaneous action potentials initiate rhythmic intercellular calcium waves in immortalized hypothalamic (GT-1) neurons. J Neurophysiol. 82:429-435. (1999)
de Boer SF, van der Gugten J, Slangen JL, Hijzen TH. Changes in plasma corticosterone and catecholamine contents induced by low doses of deltamethrin in rats. Toxicology. 49:263-270. (1988)
de la Cerda E, Navarro-Polanco RA, Sánchez-Chapula JA. Modulation of cardiac action potential and underlying ionic currents by the pyrethroid insecticide deltamethrin. Arch Med Res. 33:448-454. (2002)
Denson DD, Li J, Wang X, Eaton DC. Activation of BK channels in GH3 cells by a c-PLA2-dependent G-protein signaling pathway. J Neurophysiol. 93:3146-3156. (2005)
Dodge FA, Rahamimoff R. Co-operative action of calcium ions in transmitter release at neuromuscular junction. J Physiol. 193:419–432. (1967)
Ermentrout B. Simulating, analysing and animating dynamical system: a guide to XPPAUT for researchers and students. Philadelphia: Society for Industrial and Applied Mathematics;2002.
Gammon DW, Brown MA, Casida JE. Two classes of pyrethroid action on the cockroach. Pestic Biochem Physiol. 15:181-191. (1981)
Glassmeier G, Hauber M, Wulfsen I, Weinsberg F, Bauer CK, Schwarz JR. Ca2+ channels in clonal rat anterior pituitary cells (GH3/B6). Pflugers Arch. 442:577-587. (2001)
Golomb D, Yue C, Yaari Y. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J Neurophysiol. 96:1912-1926. (2006)
Han Y, Xia Y, Han J, Zhou J, Wang S, Zhu P, Zhao R, Jin N, Song L, Wang X. The relationship of 3-PBA pyrethroids metabolite and male reproductive hormones among non-occupational exposure males. Chemosphere. 72:785-790. (2008)
Hildebrand ME, McRory JE, Snutch TP, Stea A. Mammalian voltage-gated calcium channels are potently blocked by the pyrethroid insecticide allethrin. J Pharmacol Exp Ther. 308:805-813. (2004)
Huang CW, Huang CC, Lin MW, Tsai JJ, Wu SN. The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons. Int J Neuropsychopharmacol. 11:597-610. (2008)
Kaneishi K, Sakuma Y, Kobayashi H, Kato M. 3’,5’-cyclic adenosine monophosphate augments intracellular Ca2+ concentration and gonadotropin-releasing hormone (GnRH) release in immortalized GnRH neurons in an Na+-dependent manner. Endocrinology. 143:4210-4217. (2002)
Kwiecien R, Hammond C. Differential management of Ca2+ oscillations by anterior pituitary cells: a comparative overview. Neuroendocrinology. 68:135-151. (1998)
LeBeau AP, Robson AB, McKinnon AE, Donald RA, Sneyd J. Generation of action potentials in a mathematical model of corticotrophs. Biophys J. 73:1263-1275. (1997)
Lee D, Park Y, Brown TM, Adams ME. Altered properties of neuronal sodium channels associated with genetic resistance to pyrethroids. Mol Pharmacol. 55:584-593. (1999)
Lieste JR, Koopman WJH, Reynen VCJ, Scheenen WJJM, Jenks BG, Roubos EW. Action currents generate stepwise intracellular Ca2+ patterns in a neuroendocrine cell. J Biol Chem. 273:25686-25694. (1998)
Lin MW, Wang YJ, Liu SI, Lin AA, Lo YC, Wu SN. Characterization of aconitine-induced block of delayed rectifier K+ current in differentiated NG108-15 neuronal cells. Neuropharmacology. 54:912-923. (2008)
Lin MW, Yang SR, Huang MH, Wu SN. Stimulatory actions of caffeic acid phenethyl ester, a known inhibitor of NF-B activation, on Ca2+-activated K+ current in pituitary GH3 cells. J Bio Chem. 279:26885-26892. (2004)
Narahashi T. Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci. 13:236-241. (1992)
Ogata N, Ohishi Y. Molecular diversity of structure and function of the voltage-gated Na+ channels. Jpn J Pharmacol. 88:365-377. (2002)
Perkins KL. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J Neurosci Methods. 154:1-18. (2006)
Pine MD, Hiney JK, Lee B, Dees WL. The pyrethroid pesticide esfenvalerate suppresses the afternoon rise of luteinizing hormone and delays puberty in female rats. Environ Health Perspect. 116:1243-1247. (2008)
Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ. Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. J Neurophysiol. 100:3030-3042. (2008)
Simasko SM. A background sodium conductance is necessary for spontaneous depolarizations in rat pituitary cell line GH3. Am J Physiol. 266:C709-719. (1994)
Simeone TA, Rho JM, Baram TZ. Single channel properties of hyperpolarization-activated cation currents in acutely dissociated rat hippocampal neurones. J Physiol. 568:371-380. (2005)
Soderlund DM. Pyrethroids, knockdown resistance and sodium channels. Pest Manag Sci. 64:610-616. (2008)
Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology. 171:3–59. (2002)
Song J, Narahashi T. Modulation of sodium channels of rat cerebellar Purkinje neurons by the pyrethroid tetramethrin. J Pharmacol Exp Ther. 277:445-453. (1996)
Spencer CI, Sham JS. Mechanisms underlying the effects of the pyrethroid tefluthrin on action potential duration in isolated rat ventricular myocytes. J Pharmacol Exp Ther. 315:16-23. (2005)
Symington SB, Clark JM. Action of deltamethrin on N-type (Cav2.2) voltage-sensitive calcium channels in rat brain. Pestic Biochem Physiol. 82:1-15. (2005)
Tabak J, Toporikova N, Freeman ME, Bertram R. Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J Comput Neurosci. 22:211-222. (2007)
Tazerart S, Viemari JC, Darbon P, Vinay L, Brocard F. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. J Neurophysiol. 98:613-628. (2007)
Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol. 17:S169-177. (2006)
Valdez-Cruz NA, Batista CV, Zamudio FZ, Bosmans F, Tytgat J, Possani LD. Phaiodotoxin, a novel structural class of insect-toxin isolated from the venom of the Mexican scorpion Anuroctonus phaiodactylus. Eur J Biochem. 271:4753-4761. (2004)
van Goor F, LeBeau AP, Krsmanovic LZ, Sherman A, Catt KJ, Stojikovic SS. Amplitude-dependent spike-broadening and enhanced Ca2+ signaling in GnRH-secreting neurons. Biophys J. 79:1310-1323. (2000)
van Goor F, Zivadinovic D, Stojilkovic SS. Differential expression of ionic channels in rat anterior pituitary cells. Mol Endocrinol. 15:1222-1236. (2001)
Wang YJ, Lin MW, Lin AA, Wu SN. Riluzole-induced block of voltage-gated Na+ current and activation of BKCa channels in cultured differentiated human skeletal muscle cells. Life Sci. 82:11-20. (2008)
Wu N, Enomoto A, Tanaka S, Hsiao CF, Nykamp DQ, Izhikevich E, Chandler SH. Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. J Neurophysiol. 93:2710-2722. (2005)
Wu SN, Chen BS, Hsu TI, Peng H, Wu YH, Lo YC. Analytical studies of rapidly inactivating and noninactivating sodium currents in differentiated NG108-15 neuronal cells. J Theor Biol. 2009. [Epub ahead of print].
Wu SN, Jan CR, Li HF. Characteristics of store-operated Ca2+-permeable current in monocytic U937 cells. Chin J Physiol. 40:115-120. (1997)
Wu SN, Jan CR, Li HF, Chiang HT. Characterization of inhibition by risperidone of the inwardly rectifying K+ current in pituitary GH3 cells. Neuropsychopharmacology. 23:676–689. (2000b)
Wu SN, Li HF. Characterization of riluzole-induced stimulation of large-conductance calcium-activated potassium channels in rat pituitary GH3 cells. J Investig Med. 47:484-495. (1999)
Wu SN, Li HF, Chiang HT. Stimulatory effects of -hexachlorocyclohexane on Ca2+-activated K+ currents in GH3 lactotrophs. Mol Pharmacol. 57:865–873. (2000a)
Wu SN, Lin MW, Wang YJ. Stimulatory actions of di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS), voltage-sensitive dye, on the BKCa channel in pituitary tumor (GH3) cells. Pflűgers Arch. 455:687-699. (2008a)
Wu SN, Peng H, Chen BS, Wang YJ, Wu PY, Lin MW. Potent activation of large-conductance Ca2+-activated K+ channels by diphenylurea NS1643 in pituitary tumor (GH3) cells. Mol Pharmacol. 74:1696-1704. (2008b)
Wu SN, Wu AZ, Lin MW. Pharmacological roles of the large-conductance calcium-activated potassium channel. Curr Top Med Chem. 6:1025-1030. (2006)
Zaza A, Belardinelli L, Shryock JC. Pathophysiology and pharmacology of the cardiac "late sodium current.". Pharmacol Ther. 119:326-339. (2008)
Zhang J, Zhu W, Zheng Y, Yang J, Zhu X. The antiandrogenic activity of pyrethroid pesticides cyfluthrin and -cyfluthrin. Reprod Toxicol. 25:491-496. (2008a)
Zhang SY, Ueyama J, Ito Y, Yanagiba Y, Okamura A, Kamijima M, Nakajima T. Permethrin may induce adult male mouse reproductive toxicity due to cis isomer not trans isomer. Toxicology. 248:136-141. (2008b)