簡易檢索 / 詳目顯示

研究生: 張顓麟
Chang, Chuan-Lin
論文名稱: 合成Copper Silicate孔洞材料作為氫化觸媒之研究
Synthesis of Porous Copper Silicates as Hydrogenation Catalyst
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 氧化矽剝蝕法共沉澱法金屬矽酸鹽孔洞材料氫化
外文關鍵詞: silicate-exfoliation, co-precipitation, metal silicate, hydrogenation
相關次數: 點閱:102下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於,利用兩種簡便的合成手法:氧化矽剝蝕法與共沉澱法,在搭配矽酸鈉的使用下,合成出具有高比表面積、高金屬氧化物分散性之孔洞材料。以往製備孔洞材料的研究中,常利用有機模板和生成物間的作用力,生成與模板具有相似結構之構型的材料,但必須利用酸洗或是高溫鍛燒的方式來移除模板,實驗過程繁複、成本較高。
    本研究中的氧化矽剝蝕法則是先製備出氫氧化銅作為金屬模板,再加入矽酸鈉使材料在高鹼性環境下進行水熱反應,使矽酸鹽對金屬氫氧化物模板進行剝蝕之後再重組而結合,且由於氫氧化銅模板和氧化矽兩者的晶格尺寸不匹配,重組後的結構因應力而捲曲,最後形成具有管狀結構的copper phyllosilicate。共沉澱法的實驗過程與結果更能穩定控制,由金屬前驅物離子溶液與矽酸鈉混合後,再以鹼源調整使其共同沉澱。在實驗參數的調控方面,藉由改變反應pH值、水熱反應時間和溫度、銅/氧化矽莫耳比例、反應濃度…等實驗參數,控制實驗路徑及最佳合成條件。最後,兩種合成方法放大製程後,皆可得到比表面積在400 m2 g-1以上的copper phyllosilicate孔洞材料。
    本實驗改變以往使用單一金屬前驅物合成metal silicate的開發,將同時以硝酸銅和硝酸鎳作為金屬離子之前驅物,以氧化矽剝蝕法合成nickel-copper silicate,並透過調整前驅物劑量和鍛燒溫度,可使催化劑中主成份達到最適當的比例關係,再調整水熱時間、反應pH值…等各種變因,以觀察材料結構和性質的影響。最後,嘗試以放大製程所合成出來的copper phyllosilicate以及nickel-copper silicate孔洞材料進行己二酸氫化的測試,希望能建立其研究方針。

    Two facile methods are presented for the preparation of meso-structural copper phyllosilicate and nickel-copper silicate via the hydrothermal treatment of metal-ion liquid using sodium silicate. The first method, referred to as the silicate-exfoliation method, is used to synthesize both copper phyllosilicate and nickel-copper silicate. In the proposed route, sodium hydroxide is added to metal-ion liquid to pH 11.0 and the resulting suspension is mixed with sodium silicate aqueous solution. Hydrothermal treatment at 100℃ for 3 days is then performed to obtain the desired mesoporous metal silicate materials. The second method, referred to as the co-precipitation method, is used to synthesize copper phyllosilicate only. Sodium silicate aqueous solution is mixed with copper-ion liquid and the pH value is adjusted with sodium hydroxide. Hydrothermal treatment is then applied to obtain the required copper phyllosilicate. For both materials, a systematic investigation is performed into the effects of the hydrothermal time, hydrothermal temperature, pH value, and copper-to-silica molar ratio on the shape, morphology, and surface area of the metal silicate materials. In general, the metal silicates obtained in both methods have a high specific surface area and a large number of well-dispersed metal oxide active sites. As a result, all of the synthesized materials exhibit a high performance as catalysts for the hydrogenation of adipic acid and the strength of the Cu-O-Si bond in the synthesized materials increased following calcination at 500℃.

    第一章 緒論 1 1.1 中孔洞材料介紹 1 1.2 矽酸鹽 2 1.3 頁矽酸鹽介紹 4 1.4 結合金屬氧化物之中孔洞氧化矽材料合成 5 1.5 結合金屬氧化物複合材料的合成方法 6 1.6 氫化己二酸生成己二醇(圖1-6) 7 1.6.1 己二酸(AA) 7 1.6.2 己二醇(HDOL) 7 第二章 實驗部分及儀器設備介紹 9 2.1 實驗藥品 9 2.2 實驗步驟及流程示意圖 9 2.2.1 以氧化矽剝蝕法製備copper phyllosilicate孔洞材料 10 2.2.2 以共沉澱法製備copper phyllosilicate孔洞材料 11 2.2.3 以氧化矽剝蝕法製備nickel-copper silicate孔洞材料 12 2.2.4 鍛燒copper silicate / nickel-copper silicate孔洞材料 13 2.3 儀器鑑定分析 14 2.3.1 穿透式電子顯微鏡(Transmission Electron Microscope;TEM) 14 2.3.2 掃描式電子顯微鏡(Scanning Electron Microscope;SEM) 14 2.3.3 熱重分析儀(Thermogravimetric Analysis;TGA) 15 2.3.4 氮氣等溫吸附/脫附測量(N2 adsorption / desorption isotherm) 15 2.3.5 X-射線粉末繞射光譜(Powder X-Ray Diffraction;PXRD) 20 2.3.6 能量分散光譜儀(Energy Dispersive Spectroscopy;EDS) 21 2.3.7 全反射红外光譜法(Attenuated Total Reflectance;ATR) 22 2.3.8 傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy;FTIR) 23 2.3.9 火焰原子吸收光譜儀(Atomic Absorption Spectrophotometer;AA) 23 第三章 製備Copper Phyllosilicate孔洞材料 25 3.1 研究目的與動機 25 3.2 以氧化矽剝蝕法製備copper phyllosilicate孔洞材料並且放大製程 26 3.2.1 探討水熱時間對材料的影響 26 3.2.2 探討水熱溫度對材料的影響 29 3.2.3 探討Cu/SiO2莫耳比例對材料的影響 32 3.2.4 探討反應銅離子濃度對材料的影響 35 3.3 以共沉澱法製備copper phyllosilicate孔洞材料並且放大製程 38 3.3.1 探討pH值對材料的影響 38 3.3.2 探討探討水熱時間對材料的影響 42 3.3.3 探討探討水熱溫度對材料的影響 44 3.3.4 探討Cu/SiO2莫耳比例對材料的影響 47 3.3.5 探討反應銅離子濃度對材料的影響 50 3.4 應用 53 3.4.1 將大量製程之copper silicate應用於己二酸氫化 53 第四章 製備Bimetallic Silicate孔洞材料 55 4.1 研究目的與動機 55 4.2 以氧化矽剝蝕法製備nickel-copper silicate孔洞材料 55 4.2.1 探討pH值對材料的影響 55 4.2.2 探討Cu/Ni莫耳比例對材料的影響 59 4.2.3 探討(Cu+Ni)/SiO2莫耳比例對材料的影響 64 4.2.4 探討水熱時間對材料的影響 67 4.2.5 推導反應機構 71 4.2.6 探討鍛燒溫度對材料的影響 72 4.3 應用 75 4.3.1 將大量製程之nickel-copper silicate應用於己二酸氫化 75 第五章 總結 77 參考文獻 78

    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834-10843.
    3. H. Y. Jin, L. J. Wang and N. C. Bing, Mater. Lett., 2011, 65, 233-235.
    4. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor. Mesopor. Mat., 2001, 44, 625-637.
    5. H. P. Lin and C. Y. Mou, Accounts. Chem. Res., 2002, 35, 927-935.
    6. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141-1146.
    7. C. J. Brinker and G. W. Scherer, J. Non-Cryst. Solids, 1985, 70, 301-322.
    8. J. Wittke, Meteorite Book: Glossary P, 2014.
    9. E. P. Giannelis, R. Krishnamoorti and E. Manias, Adv. Polym. Sci., 1999, 138, 107-147.
    10. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Acc. Chem. Res., 1998, 31, 485-493.
    11. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angew. Chem. Int. Ed. Engl., 1997, 36, 1001-1003.
    12. R. Murugavel and H. W. Roesky, Angew. Chem. Int. Ed. Engl., 1997, 36, 477-479.
    13. M. G. Clerici, G. Bellussi and U. Romano, J. Catal., 1991, 129, 159-167.
    14. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr. Pap. Am. Chem. Soc., 1993, 206, 57-Petr.
    15. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor. Mesopor. Mat., 1998, 25, 43-57.
    16. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    17. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J. Catal., 1994, 148, 569-574.
    18. M. D. Alba, Z. Luan and J. Klinowski, J. Phys. Chem., 1996, 100, 2178-2182.
    19. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal. Lett., 1996, 37, 113-120.
    20. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem. Mater., 2001, 13, 552-557.
    21. D. R. Rolison, Science, 2003, 299, 1698-1701.
    22. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor. Mesopor. Mat., 2008, 113, 562-574.
    23. M. Plabst, L. B. McCusker and T. Bein, J. Am. Chem. Soc., 2009, 131, 18112-18118.
    24. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal., 1989, 115, 301-309.
    25. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J. Phys. Chem. B, 2002, 106, 13287-13293.
    26. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
    27. 張勤、林弘萍,「硬模板法合成中孔洞氧化矽、氧化鋁空心球」,2018。
    28. 張以潔、林弘萍,「氧化矽孔洞材料與金屬矽酸鹽複合材料之合成與應用」,2017。
    29. M. H. Nilsen, E. Antonakou, A. Bouzga, A. Lappas, K. Mathisen and M. Stocker, Micropor. Mesopor. Mat., 2007, 105, 189-203.
    30. E. Moretti, L. Storaro, A. Talon, R. Moreno-Tost, E. Rodriguez-Castellon, A. Jimenez-Lopez and M. Lenarda, Catal. Lett., 2009, 129, 323-330.
    31. V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner and T. Bein, J. Am. Chem. Soc., 2009, 131, 11361-11370.
    32. A. Yin, X. Guo, W. L. Dai and K. Fan, J. Phys. Chem. C, 2009, 113, 11003-11013.
    33. Y. Wang, Y. Shen, Y. Zhao, J. Lv, S. Wang and X. Ma, ACS Catal., 2015, 5, 6200-6208.
    34. H. Yue, Y. Zhao, S. Zhao, B. Wang, X. Ma and J. Gong, Nat. Commun., 2013, 4, 2339.
    35. J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao, J. Lv, S. Wang and X. Ma, J. Am. Chem. Soc., 2012, 134, 13922-13925.
    36. X. Gong, M. Wang, H. Fang, X. Qian, L. Ye, X. Duan and Y. Yuan, Chem. Commun., 2017, 53, 6933-6936.
    37. Y. Zhu, X. Kong, J. Yin, R.You, B. Zhang, H. Zheng, X. Wen, Y. Zhu, Y. W. Li, J. Catal.,2017, 353, 315-324.
    38. S. B. Shinde and R. M. Deshpande, New Advances in Hydrogenation Processes, CH6, 103-109.
    39. R. P. Ye, L. Lin, Q. Li, Z. Zhou, T. Wang, C. K. Russell, H. Adidharma, Z. Xu, Y. G. Yao and M. Fan, Catal. Sci. Technol., 2018, 8, 3428-3449.
    40. F. Dong, Y. Zhu, H. Zhao, Z. Tang, Catal. Sci. Technol., 2017, 7, 1880-1891.
    41. J. Ullrich and B. Breit, ACS Catal., 2018, 8, 785-789.
    42. P. W. Schindler, B. Furst, R. Dick and P. U. Wolf, J. Colloid Interface Sci., 1976, 55, 469-475.
    43. T. W. Healy, R. O. James and R. Cooper, Advances in Chemistry Series, 1968, CH6, 62-73.
    44. R. L. Burwell Jr., R. G. Pearson, G. L. Haller, P. B. Tjok and S. P. Chock, Inorg. Chem., 1965, 4, 1123-1128.
    45. L. Pauling, Proc. Natl. Acad. Sci. U.S.A., 1930, 16, 578–582.
    46. J.A. Rodriguez and D.W. Goodman, Science, 1992, 257, 897-903.
    47. T. Bligaard, J.K. Nørskov, J. Rossmeisl and C.H. Christensen, Nat. Chem., 2009, 1, 37-46.
    48. J.K. Nørskov and C.H. Christensen, Science, 2006, 312, 1322-1323.
    49. J.K. Nørskov, Nature, 2001, 414, 405-406.
    50. F. Besenbacher, I. Chorkendorff, B. S. Clausen, B. Hammer, A. M. Molenbroek, J. K. Nørskov and I. Stensgaard, Science, 1998, 279, 1913-1915.
    51. C. Burda, X. B. Chen, R. Narayanan and M. A. El-Sayed, Chem. Rev., 2005, 105, 1025-1102.
    52. 蔡昀志、林弘萍,「以氧化矽剝蝕法與共沉澱法合成metal-silicate孔洞材料及應用之研究」,2017。
    53. P. He, Z. Z. Zhang, X. L. Peng, J. Wu and N. C. Chen, J. Taiwan Inst. Chem. Eng., 2018, 85, 201-206.
    54. W. Xu, Y. G. Adewuyi, Y. Liu and Y. Wang, Fuel Process. Technol., 2018, 170, 21-31.
    55. A. Hugon, L. Delannoy, J. M. Krafft and C. Louis, J. Phys. Chem. C, 2010, 114, 10823-10825.
    56. J. C. Dellamorte, J. Lauterbach and M. A. Barteau, Catal. Today, 2007, 2, 182-185.
    57. S. Kameoka and A. P. Tsai, Catal. Today, 2008, 132, 88-92.
    58. M. T. Schaal, A. Y. Metcalf, J. H. Montoya, J. P. Wilkinson, C. C. Stork, C. T. Williams and J. R. Monnier, Catal. Today, 2007, 123, 142-150.
    59. A. Yin, C. Wen, X. Guo, W. L. Dai and K. Fan, J. Catal., 2011, 280, 77-88.

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE