簡易檢索 / 詳目顯示

研究生: 黃順泰
Wijaya, Michael Adi
論文名稱: 氮化鋁 / 高分子複合材料熱傳導性質研究及氮化硼導熱膠製程開發
A Study on Thermal conductivity of Aluminum Nitride / Polymer Composites and Process Development for Boron Nitride Thermal Grease
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 122
外文關鍵詞: aluminium nitride, boron nitride, silane coupling agent, surface treatment, combustion synthesis, thermal interface material, thermal grease
相關次數: 點閱:100下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis is composed of two main parts. The first part is focused on enhancement of thermal conductivity of epoxy resin by filling it with aluminum nitride powder. This part used aluminum nitride with or without surface treatment and the manufacture of aluminum nitride composite was conducted using the hot-pressing method which was developed by Laboratory for Advanced Materials Synthesis and Applications (LAMSA). The second part is focused on development of thermal interface material by using boron nitride powder as filler. Effect of many experimental parameters on the thermal conductivity of the composites were investigated including (1) particle size of aluminum nitride, (2) oxygen content of aluminum nitride, (3) surface treatment, (4) temperature of surface treatment method. The surface treatment was conducted using only APTS as the coupling agent since it could enhance the affinity between the epoxy and aluminum nitride powder and effectively reduce the thermal interface barrier. From the experiment, the influences of the factors to the thermal conductivity will be apparent. The result showed, with or without surface treatment, when the particle size is increase, the value of the oxygen content decrease, and thus also increase the thermal conductivity. However, surface treatment can significantly increase the thermal conductivity if compared with untreated aluminum nitride. Moreover, using 60oC heat in surface treatment method also will increase the thermal conductivity. However, surface treatment at room temperature more effective than surface treatment at 60oC. The second part of this research is to develop boron nitride thermal grease and to study the factors that affect the properties of the thermal greases’. In addition to study the thermal conductivity, this thesis also study the development of method to manufacture thermal grease and the other parameters that have to be considered in development thermal grease, such as composition,
    viscosity, and spread ability. From the experiment, the mortar and pestle is the most effective method to manufacture boron nitride thermal grease. The composition of 30wt% - 35wt% boron nitride and 70wt% - 65wt% the dimethyl silicone oil with viscosity 5,000cst/10,000cst is sufficient to make thermal grease. Particle size and filler content influence the sedimentation, viscosity, and spread ability of the thermal greases. The smaller particle size has little sedimentation since it has larger viscosity. In all of the thermal grease, air bubble does not occur when applied and the spread ability result is very related to the viscosity of the thermal grease. As for the thermal conductivity values, the commercial thermal grease has the highest thermal conductivity, since it uses silver as the main filler. In addition, for the boron nitride thermal grease, the thermal grease with LAMSA powder has higher thermal conductivity than the thermal grease filled with the commercial powder. Furthermore, smaller particle size and lower filler content will have lower thermal conductivity.

    ABSTRACT I EXTENDED ABSTRACT III ACKNOWLEDGMENT XII TABLE OF CONTENTS XIII LIST OF FIGURES XVI LIST OF TABLES XIX CHAPTER 1 Introduction 1 1.1 Introduction to aluminum nitride 1 1.2 Physical and chemical properties of aluminum nitride 3 1.3 Aluminum nitride synthesis method 4 1.4 Introduction to boron nitride 7 1.5 Boron nitride synthesis method 9 1.6 Objectives 12 1.7 Outline 13 CHAPTER 2 Literature review and summary 14 2.1 Hydrolysis properties of aluminum nitride. 14 2.2 The composite of aluminum nitride 16 2.2.1 Introduction to composites 16 2.2.2 Introduction to heat conduction mechanism 18 2.2.3 Introduction to heat conduction model 19 2.2.4 Introduction to silane coupling agent 21 2.3 Literature review 23 2.3.1 Literature review of surface the surface modification 23 2.3.2 Literature review of composite materials 27 2.4 Thermal interface material 29 2.5 Thermal grease 33 2.6 Literature review of thermal grease 39 CHAPTER 3 Experimental 40 3.1 Raw materials 40 3.1.1 The composite of alumina nitride (AlN) 40 3.1.2 Boron nitride thermal grease 41 3.2 Experimental instrumentation 41 3.2.1 The composite of alumina nitride (AlN) 41 3.2.2 Boron nitride thermal grease 42 3.3 Experimental analysis and test methods 42 3.3.1 The composite of alumina nitride (AlN) 42 3.3.2 Boron nitride thermal grease 48 3.4 Experimental procedures 50 3.4.1 The composite of alumina nitride (AlN) 50 3.4.2 Boron nitride thermal grease 51 CHAPTER 4 Results and Discussions 55 4.1 The composite of aluminum nitride 55 4.1.1 Particle size distribution and surface morphology of aluminum nitride 55 4.1.2 The surface treatment of aluminum nitride 58 4.1.3 Examination of the surface treatment of aluminum nitride 58 4.1.4 Analysis and comparison of various parameters on thermal conductivity of aluminum nitride composites 63 4.1.4.1 Effect of particle size and oxygen content on thermal conductivity 64 4.1.4.2 Data comparison of thermal conductivity AlN composites 69 4.2 Boron nitride thermal grease 73 4.2.1 The material and the method for development thermal grease 74 4.2.2 The comparison result of different composition and method 79 4.2.3 The viscosity and spread ability of thermal grease 90 4.2.4 The thermal conductivity of thermal grease 94 CHAPTER 5 Conclusions 102 5.1 The composite of aluminum nitride 102 5.2 Boron nitride thermal grease 103 REFERENCES 104 APPENDIX 111

    1. T. J. Mroz, Aluminum Nitride. American Ceramic Society Bulletin 71, 782 (1992).
    2. H. T. N. Kuramoto, and I. Aso, Sintering and Properties of High-Purity AlN Ceramics. (1998).
    3. R. A. T. G. A. Slack, R. O. Pohl, and J. W. Vandersande, The intrinsic thermal conductivity of AIN. Journal of Physics and Chemistry of Solids 48, 641-647 (1987).
    4. A. C. F. Y. E. Man, 26, 19-54 (1994).
    5. G. A. S. a. J. W. S. M. P. Borom, Ceram. Bull. 51, 11 (1972).
    6. 汪建民, 陶瓷材料手冊. 中華民國科技發展協進會, (1994).
    7. G. S. a. L. Sheet, Aluminum Nitride - Review of Synthesis Methods. Materials Science and Technology 9, 463-473 (1993).
    8. F. J. M. Haussonne, Review of the Synthesis Methods for Aln. Materials and Manufacturing Processes 10, 717-755 (1995).
    9. A. G. M. a. I. P. Borovinskaya, New Class of Combustion Processes. Combustion Science and Technology 10, 195-201 (1975).
    10. J. F. Crider, Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials. Ceramic Engineering and Science Proceedings 3, 519 (1982).
    11. S. Kumar, Self-propagating high temperature synthesis of refractory nitrides, carbides and borides. Key Engineering Materials 56-57, 183-188 (1991).
    12. A. G. M. a. I. P. Borovins, Self-Spreading High-Temperature Synthesis of Refractory Inorganic Compounds,. Doklady Akademii Nauk Sssr 201, 366 (1972).
    13. Z. A. Munir, Synthesis of High-Temperature Materials by Self-Propagating Combustion Methods. American Ceramic Society Bulletin 67, 342-249 (1988).
    14. 劉益嘉, 燃燒合成氮化鋁粉體之量產製程開發. 國立成功大學碩士論文, (2011).
    15. M. R. Sichel E, Abrahams M, Buiocchi C., Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical Review B 13, 4607 (1976).
    16. 陳煥煜, 使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討. 國立成功大學碩士論文, (2011).
    17. C. D. Xu Y, Increasing the thermal conductivity of boron nitride and Aluminum nitride particle epoxy-matrix composites by particle surface treatments. Composite material (1999).
    18. P. A. Wang X, Zhang J, Weng Q, Zhai T, Zhi C, et al., Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res Lett 7, 662 (2012).
    19. B. Y. Zhi C, Terao T, Tang C, Kuwahara H, Golberg D, Boron Nanotube-Polymer Composites: Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Advanced Functional Material 12, (2009).
    20. X. Y. Zhi C, Bando Y, Golberg D, Highly thermo-conductive fluid with boron nitride nanofillers. ACS nano 5, 6571-6577 (2011).
    21. W. T. Kimura Y, Okada K, Wada T, Nishikawa H, Boron nitride as a lubricant additive. wear 232, 199-206 (1999).
    22. https://www.sciencelearn.org.nz/images/2208-boron-nitride.
    23. 徐煜翔, 燃燒合成氮化硼之製程開發. 國立成功大學博士論文, (2015).
    24. N. C. Paine RT, Synthetic routes to boron nitride. Chem Rev 90, 73-91 (1990).
    25. S. K. Lipp A, Hunold K, Hexagonal boron nitride: Fabrication,properties and applications. J Eur Ceram Soc.5(1):3-9, 1989. 5, 3-9 (1989).
    26. B. Y. Zhi C, Tan C, Golberg D, Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun 135, 67-70 (2005).
    27. J. A. Yoon SJ, Vapour-phase reduction and the synthesis of boron-based ceramic phases. J Mater Sci 30, 607-614 (1995).
    28. V. C. Deepak FL, Mukhopadhyay K, Govindaraj A, Rao CNR, Boron nitride nanotubes and nanowires. Chem Phys Lett 353, 345-352 (2002).
    29. B. V. Borovinskaya IP, Merzhanov AG, Self-propagating high-temperature synthesis of high-porous boron nitride. Mendeleev Commun 7, 47-48 (1997).
    30. Z. X. Lian G, Zhang S, Liu D, Cui D, Wang Q, Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage.
    31. H. X. Wei Yu , Luqiao Yin, Junchang Zhao, Ligang Xia, Lifei Chen, Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. International Journal of Thermal Sciences 91, 76-82 (2015).
    32. T. H. S. F. a. H. Tsubakino, Hydrolysis behavior of aluminum nitride in various solutions. Journal of Materials Science 35, 2743-2748 (2000).
    33. 謝承佑, 氮化鋁粉體水解性質探討與抗濕技術開發. 國立成功大學碩士論文, (2002).
    34. A. M. J. G. H. Paul Bowen, Terry A. Ring, Degradation of Aluminum Nitride Powder in an Aqueous Environmet. Journal of the American Ceramic Society 73, 724-728 (1990).
    35. T. K. K. Krnel, Aqueous Processing of AlN Powder. Materials Science Forum 554, 189-196 (2007).
    36. C. S. P. Judeinstein, Hybrid organic-inorganic materials: a land of multidisciplinarity. Journal of Materials Chemistry 6, 511-525 (1996).
    37. 賴耿陽, 環氧樹脂應用實務. 復漢出版社, (1999).
    38. G. A. M. D. P. H. Hasselman, Specimen Size Effect of the Thermal Diffusivity/Conductivity of Aluminum Nitride. Journal of the American Ceramic Society 72, (1989).
    39. J. W. D. Callister, Materials Science and Engineering: An Introduction. 4, (1999).
    40. P. D. Thacher, Effect of Boundaries and Isotopes on the Thermal Conductivity of LiF. Physical Review 156, 975-988 (1967).
    41. I. C. a. Y. K. J. B. W. Kim, Thermally Conductive EMC (Epoxy Molding Compound) for Microelectronic Encapsulation,. Polymer Engineering Science 39, (1999).
    42. W. D. K. H. K. B, and D. R. Uhlmann, Introduction to Ceramics. John Wiley & Sons 12, (1976).
    43. Y. N. a. G. C. Lai, Thermal Conductivity of Epoxy Resin Filled with Particulate Aluminum Nitride Powder. J. Ceram. Soc. Jpn. 105, 197-200 (1997).
    44. Y. A. a. T. Uno, Estimation on Thermal Conductivities of Filled Polymers. J. Appl. Polym. Sci. 32, 5705-5712 (1986).
    45. E. S. L. S. M. L, D. J. Shanefieldz and W. R. Cannonw, Enhanced Thermal Conductivity of Polymer Matrix Composite via High Solids Loading of Aluminum Nitride in Epoxy Resin. J. Am. Ceram. Soc. 91, 1169-1174 (2008).
    46. S. K. L. Mittal, Silanes and Other Coupling Agents. VSP, (2009).
    47. Y. T. Y. S. M. Egashira, R. Yamaguchi, and Y. Ishikawa, Effect of Carboxylic-Acid Adsorption on the Hydrolysis and Sintered Properties of Aluminum Nitride Powder. Journal of the American Ceramic Society 77, 1793-1798 (1994).
    48. J. X. a. Y. Q. L. T. Qiu, Effect of thermal oxidation treatment in air on the hydrolysis of AlN powder. Materials Research Bulletin 32, 1173-1179 (1997).
    49. A. Ceylan, Process for protection of aluminum nitride powder against hydrolysis with sodium tripolyphosphate as dispersant. Advances in Applied Ceramicsvol 109, 373-376 (2010).
    50. T. K. K. Krnel, Reactivity of aluminum nitride powder in dilute inorganic acids. Journal of the American Ceramic Society 83, 1375-1378 (2000).
    51. S. O. M. Oliveira, J. Rocha and J. M. F. Ferreira,, Controlling hydrolysis and dispersion of AlN powders in aqueous media. Journal of Colloid and Interface Science 261, 456-463 (2003).
    52. P. Anithambigai, D. Mutharasu, L. H. Huong, T. Zahner, D. Lacey, Synthesis and thermal analysis of aluminium nitride filled epoxy composites and its effective application as thermal interface material for LED applications. Journal of Materials Science: Materials in Electronics 25, 4814-4821 (2014).
    53. H. Yu et al., Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. Journal of Applied Polymer Science 124, 669-677 (2012).
    54. S.-Y. Wu et al., Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites. Composites Part A: Applied Science and Manufacturing 42, 1573-1583 (2011).
    55. S. H. C. a. S. H. L. W. K. J. W. Bae, The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution. Journal of materials science 35, 5907-5913 (2000).
    56. J. K. S. Choi, Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Composites Part B: Engineering 51, 140-147 (2013).
    57. Y. H. W. C. A. M. a. G. Zhang, The Preparation and Cure Kinetics Researches of Thermal Conductivity Epoxy/AlN Composites. Polymer-Plastics Technology and Engineering 49, 354-358 (2010).
    58. Y. S. X. a. C. M. D. D. L. C., Thermally conducting aluminum nitride polymer-matrix composites,. Composites Part a-Applied Science and Manufacturing 32, 1749-1757 (2001).
    59. A. A. B. Khan M. F. Shahil, Graphene – Based Nanocomposites as Highly Efficient Thermal Interface Materials. (2011).
    60. R. L. W. J.P. Gwinn, Performance and testing of thermal interface materials, Microelectron. J. 34 (3) (2003) 215e222. Microelectron. J. 34, 215-222 (2003).
    61. S. R. R. L.C. Sim, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta 430, 155-165 (2005).
    62. K. L. S. Shaikh, E. Silverman,, The effect of a CNT interface on the thermal resistance of contacting surfaces. carbon 45, 695-703 (2007).
    63. H. W. H. Chen, M. Chen, F. Meng, H. Li, Q. Li, Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. appl. Surf. Sci. 283, 525-531 (2013).
    64. G. O. S. Kemaloglu, A. Aytac, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim. Acta 499, 40-47 (2010).
    65. D. D. L. Chung, Thermal interface materials. J. Mater. Eng. Perform. 10, 56-59 (2001).
    66. http://www.idtechex.com/research/reports/thermal-interface-materials-2016-2026-status-opportunities-market-forecasts-000474.asp?viewopt=desc.
    67. http://www.marketsandmarkets.com/Market-Reports/thermal-interface-material-market-13483121.html
    68. C. L. G. Becker, Z. Lin, Thermal conductivity in advanced chips: emerging generation of thermal greases offers advantages. Adv. Packag. 14, 14 (2005).
    69. D. C. W. F. Sarvar, P.P. Conway, Thermal interface materials-A review of the state of the art. Electronics Systemintegration Technology Conference 2, 1292-1302 (2006).
    70. S. H. Q. W.Y. Zhou, H.Z. Zhao, N.L. Liu, Thermally conductive silicone rubber reinforced with boron nitride particle. Polym. Compos. 28, 23-28 (2007).
    71. http://wccftech.com/review/thermal-grease-shootout/.
    72. http://nerdtechy.com/best-thermal-paste-reviews-2016.
    73. http://www.arcticsilver.com/as5.htm.
    74. http://www.arctic.ac/.
    75. http://www.noctua.at/.
    76. https://www.chemtronics.com/.
    77. http://www.topspindesign.com/.
    78. http://www.aitechnology.com/.
    79. http://hi-z.com/.
    80. http://www.pcadvisor.co.uk/how-to/desktop-pc/how-to-apply-thermal-paste-cpu-3636146/.
    81. H. X. Wei Yu , Luqiao Yin, Junchang Zhao, Ligang Xia, Lifei Chen, Graphene based silicone thermal greases. Physics Letters A 378, 207-211 (2014).
    82. http://www.horiba.com/sg/scientific/products/particle-characterization/particle-size-analysis/details/la-950-laser-particle-size-analyzer-108
    83. http://granat-e.ru/leco_analiz.html.
    84. 林沼森, Graphene Oxide as an Additive in Liquid and Printable Electrolyte for Dye-sensitized Solar Cell Applications. 國立成功大學碩士論文, (2017).
    85. https://www.phi.com/surface-analysis-equipment/versaprobe.html.
    86. http://www.laboratoryequipment.com/product-release/2013/04/tga-suited-many-lab-applications.
    87. https://www.fishersci.com/shop/products/mettler-toledo-newclassic-ms-analytical-balances-draft-shield-3/p-3765254.
    88. http://fcml.tamu.edu/equipment-list/laser-flash-analysis-netzsch-lfa-447-nanoflash.aspx.
    89. http://www.labwrench.com/?equipment.view/equipmentNo/4810/AMETEK-Brookfield/DV-II--Pro/).
    90. http://img.directindustry.com/images_di/photo-g/14711-4504773.jpg.
    91. 翁德名, 氮化硼塗料開發與氮化鋁之燃燒合成及表面改質製程研究. 國立成功大學碩士論文, (2017).
    92. D. D. L. C. Yun Sheng Xu, Increasing the thermal conductivity of boron nitride particle epoxy-matrix composites by particle surface treatments. Composite Interface 7, 243-256 (2000).
    93. ScienceLab.com, Material Safety Data Sheet 3-Aminopropyltriethoxysilane MSDS.
    94. 林華蒼, 氮化鋁與氮化硼之表面改質及高導熱複合材料之製程開發. 國立成功大學碩士論文, (2015).
    95. G.-C. L. Yuji Nagai Thermal conductivity of epoxy rensin filled with particulate aluminum nitride powder. Journal of the ceramic society of japan 105, 197-200 (1997).
    96. S. M. Moretto Hans-Heinrich, Wagner Gebhard Silicones. Ullmann's Encyclopedia of Industrial Chemistry. , (2005).
    97. E. L. Jonathan K. Whitmer, Sedimentation of aggregating colloids. The Journal of Chemical Physics 134, (2011).
    98. D. Corning, Silicone Grease Solutions for your Thermal Interfance Needs. Across Application and Industries.
    99. J. G. C. Konrad J. A. Kundig CHAPTER 4 : COPPER AND COPPER ALLOYS. Mechanical Engineers’ Handbook: Materials and Mechanical Design,Third Edition. 1, (2006).
    100. A. silver, Arctic Silver 5 Safety Data Sheet (SDS). OSHA HazCom Standard 29 CFR 1910.1200(g) and GHS Rev 03., (2015).
    101. http://www.peacockozaki.jp/e_sub01_23.htm.
    102. C. D. Martin Freyberg, Application of thermal paste for Power Modules without base plate. SEMIKRON INTERNATIONAL.

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE