簡易檢索 / 詳目顯示

研究生: 施昀廷
Shih, Yun-Ting
論文名稱: 在奈⽶通道薄膜內對離⼦熱電提升之研究
Enhancement of Ionic Thermoelectricity in Nanochannel Membranes
指導教授: 楊瑞珍
Yang, Ruey-Jen
張志彰
Chang, Chih-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 116
中文關鍵詞: 氧化石墨烯蠶絲蛋白空間電荷離子熱電奈米通道
外文關鍵詞: Graphene oxide, Silk fibroin, Space charge, Ionic thermoelectricity, Nanochannel
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以往文獻對於離子熱電材料的研究主要著重於電極的氧化還原反應以及巨觀下電解液中的離子傳輸。近年來由於奈米材料的發展,使得奈米尺度下的熱電離子傳輸逐漸受到重視,然而現有的文獻僅探討奈米尺度下之表面電荷對離子之影響,並無探討空間電荷效應。故本研究利用氧化石墨烯(GO)的堆疊以建構奈米通道,並引入了能夠提供空間電荷的蠶絲蛋白(Silk)以提升離子選擇性。並將薄膜封裝至裝置內浸泡電解液,再施加非等溫的溫度場以探討奈米通道內之離子傳輸現象。結果顯示蠶絲蛋白的增加能夠提升離子的選擇性,在濃度為0.1 mM氯化鉀電解液之中,GO/Silk 20 wt%薄膜有最高的賽貝克係數(-0.294 mV/K) 與純GO薄膜(-0.258 mV/K)相比提升了14 %,顯示出空間電荷具有增強離子熱電結果。此外,1 mM氯化鉀電解液下GO/Silk 20 wt%薄膜則比純GO薄膜提升了約36 %之電流。除了探討空間電荷對於離子熱電的影響,本研究也探討了溫度差以及不同離子在奈米通道下之離子傳輸,其中溫度差的增加使電極衰退,進而使薄膜的賽貝克係數增加。此外價電子數的增多影響了離子水合半徑大小,也影響了離子之移動性(mobility),實驗結果顯示價電子數與賽貝克係數成反比關係。

    Liquid ionic thermoelectric materials have been promising materials due to the higher Seebeck coefficient compared to solid-state semiconductor thermoelectric materials at low-temperature waste heat sources. Additionally, an electrical double layer (EDL) formed by surface charge enhances the performance of ionic thermoelectricity at the nanoscale. However, not only surface charge but space charge dose affect ion transport at the nanoscale, and recent studies only investigated the surface charge effect in nanoconfined ionic thermoelectricity. In this study, a composite nanochannel membrane is fabricated by graphene oxide (GO) and silk fibroin, which provides space charge. In order to compare the influence of space charge in ionic thermoelectricity, reservoirs are applied temperature gradient. Experimental results indicate that 20 wt% GO/silk fibroin composite membrane has optimal Seebeck coefficient (-0.294 mV/K) in 0.1 mM potassium chloride electrolyte, which is 14% higher than pristine graphene oxide membrane (-0.258 mV/K). In 1 mM potassium chloride electrolyte, 20 wt% GO/silk membrane shows 36 % increase in current compared with pristine graphene oxide membrane. This study also investigates ion transport in nanochannel with different ions, where the number of valence electrons affects the ionic hydration radius and ion mobility. The experimental results demonstrate an inverse relationship between the valence number and the Seebeck coefficient.

    中文摘要 I 內容目錄 XV 表目錄 XVII 圖目錄 XVIII 縮寫說明 XXII 第一章 緒論 1 1.1 簡介 1 1.2 文獻回顧 5 1.3 研究動機 18 第二章 原理 19 2.1 奈米流體力學 (Nanofluidics) 19 2.2 離子熱電效應 31 第三章 實驗材料與方法 38 3.1 實驗儀器 38 3.2 化學品與材料 49 3.3 蠶絲蛋白懸浮溶液 51 3.4 二維材料複合薄膜 52 3.5 材料分析 53 3.6 實驗裝置 54 3.7 電性量測架設 57 第四章 結果與討論 61 4.1 薄膜結構與材料分析 61 4.2 電性量測 66 第五章 結論與展望 81 5.1 結論 81 5.2 展望 82 參考文獻 83

    [1] A. Firth, B. Zhang, and A. Yang, Quantification of Global Waste Heat and Its Environmental Effects. Applied Energy, 2019. 235: p. 1314-1334.
    [2] H. Cheng, Q. Le, Z. Liu, Q. Qian, Y. Zhao, and J. Ouyang, Ionic Thermoelectrics: Principles, Materials and Applications. Journal of Materials Chemistry C, 2022. 10(2): p. 433-450.
    [3] N. Van Toan, M.M.I.M. Hasnan, D. Udagawa, N. Inomata, M. Toda, S.M. Said, M.F.M. Sabri, and T. Ono, Thermoelectric Power Battery Using Al2O3 Nanochannels of 10 nm Diameter for Energy Harvesting of Low-grade Waste Heat. Energy Conversion and Management, 2019. 199: p. 111979.
    [4] W. Liu, X. Qian, C.-G. Han, Q. Li, and G. Chen, Ionic Thermoelectric Materials for Near Ambient Temperature Energy Harvesting. Applied Physics Letters, 2021. 118(2).
    [5] T. Li, X. Zhang, S.D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen, and J. Dai, Cellulose Ionic Conductors with High Differential Thermal Voltage for Low-grade Heat Harvesting. Nature Materials, 2019. 18(6): p. 608-613.
    [6] M. Dupont, D. MacFarlane, and J. Pringle, Thermo-electrochemical Cells for Waste Heat Harvesting–Progress and Perspectives. Chemical Communications, 2017. 53(47): p. 6288-6302.
    [7] K. Chen, L. Yao, and B. Su, Bionic Thermoelectric Response with Nanochannels. Journal of the American Chemical Society, 2019. 141(21): p. 8608-8615.
    [8] W. Zhao, Y. Wang, M. Han, J. Xu, L. Han, and K.C. Tam, Osmotic Energy Generation with Mechanically Robust and Oppositely Charged Cellulose Nanocrystal Intercalating GO Membranes. Nano Energy, 2022. 98: p. 107291.
    [9] Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, and X. Feng, Mechanically Strong MXene/Kevlar Nanofiber Composite Membranes As High-performance Nanofluidic Osmotic Power Generators. Nature Communications, 2019. 10(1): p. 2920.
    [10] Z. Sun, M. Ahmad, Z. Gao, Z. Shan, L. Xu, S. Wang, and Y. Jin, Highly Ionic Conductive and Mechanically Strong MXene/CNF Membranes for Osmotic Energy Conversion. Sustainable Energy & Fuels, 2022. 6(2): p. 299-308.
    [11] Z. Gao, Z. Sun, M. Ahmad, Y. Liu, H. Wei, S. Wang, and Y. Jin, Increased Ion Transport and High-efficient Osmotic Energy Conversion Through Aqueous Stable Graphitic Carbon Nitride/Cellulose Nanofiber Composite Membrane. Carbohydrate Polymers, 2022. 280: p. 119023.
    [12] V.-P. Mai, W.-H. Huang, Y.-L. Chang, and R.-J. Yang, Composite GO@Silk Membrane for Capillary-driven Energy Conversion. Journal of Membrane Science, 2023. 671: p. 121403.
    [13] W. Xin, H. Xiao, X.-Y. Kong, J. Chen, L. Yang, B. Niu, Y. Qian, Y. Teng, L. Jiang, and L. Wen, Biomimetic Nacre-like Silk-crosslinked Membranes for Osmotic Energy Harvesting. ACS Nano, 2020. 14(8): p. 9701-9710.
    [14] S. Brückner, S. Liu, L. Miró, M. Radspieler, L.F. Cabeza, and E. Lävemann, Industrial Waste Heat Recovery Technologies: An Economic Analysis of Heat Transformation Technologies. Applied Energy, 2015. 151: p. 157-167.
    [15] Z. Su, M. Zhang, P. Xu, Z. Zhao, Z. Wang, H. Huang, and T. Ouyang, Opportunities and Strategies for Multigrade Waste Heat Utilization in Various Industries: A Recent Review. Energy Conversion and Management, 2021. 229: p. 113769.
    [16] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S.A. Tassou, Waste Heat Recovery Technologies and Applications. Thermal Science and Engineering Progress, 2018. 6: p. 268-289.
    [17] C. Forman, I.K. Muritala, R. Pardemann, and B. Meyer, Estimating the Global Waste Heat Potential. Renewable and Sustainable Energy Reviews, 2016. 57: p. 1568-1579.
    [18] I. Johnson, W.T. Choate, and A. Davidson, Waste Heat Recovery. Technology and Opportunities in US Industry. 2008, BCS, Inc., Laurel, MD (United States).
    [19] B. Xu, D. Rathod, A. Yebi, Z. Filipi, S. Onori, and M. Hoffman, A Comprehensive Review of Organic Rankine Cycle Waste Heat Recovery Systems in Heavy-duty Diesel Engine Applications. Renewable and Sustainable Energy Reviews, 2019. 107: p. 145-170.
    [20] B. Saleh, G. Koglbauer, M. Wendland, and J. Fischer, Working Fluids for Low-temperature Organic Rankine Cycles. Energy, 2007. 32(7): p. 1210-1221.
    [21] H. Chen, D.Y. Goswami, and E.K. Stefanakos, A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-grade Heat. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 3059-3067.
    [22] D. Champier, Thermoelectric Generators: A Review of Applications. Energy Conversion and Management, 2017. 140: p. 167-181.
    [23] W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Recent Development and Application of Thermoelectric Generator and Cooler. Applied Energy, 2015. 143: p. 1-25.
    [24] H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, Q. Doraghi, L. Ahmad, L. Norman, B. Axcell, L. Wrobel, and S. Dai, Thermoelectric Generator (TEG) Technologies and Applications. International Journal of Thermofluids, 2021. 9: p. 100063.
    [25] G.J. Snyder and E.S. Toberer, Complex Thermoelectric Materials. Nature Materials, 2008. 7(2): p. 105-114.
    [26] Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, C. Xiao, and Y. Pei, A Record Thermoelectric Efficiency in Tellurium-free Modules for Low-grade Waste Heat Recovery. Nature Communications, 2022. 13(1): p. 237.
    [27] L. Hu, Y.-W. Fang, F. Qin, X. Cao, X. Zhao, Y. Luo, D.V.M. Repaka, W. Luo, A. Suwardi, and T. Soldi, High Thermoelectric Performance Enabled by Convergence of Nested Conduction Bands in Pb7Bi4Se13 with Low Thermal Conductivity. Nature Communications, 2021. 12(1): p. 4793.
    [28] V.-P. Mai and R.-J. Yang, Active Control of Salinity-based Power Generation in Nanopores Using Thermal and pH Effects. RSC Advances, 2020. 10(32): p. 18624-18631.
    [29] V.-P. Mai and R.-J. Yang, Boosting Power Generation from Salinity Gradient on High-density Nanoporous Membrane Using Thermal Effect. Applied Energy, 2020. 274: p. 115294.
    [30] R. Long, Z. Luo, Z. Kuang, Z. Liu, and W. Liu, Effects of Heat Transfer and The Membrane Thermal Conductivity on the Thermally Nanofluidic Salinity Gradient Energy Conversion. Nano Energy, 2020. 67: p. 104284.
    [31] A. Siria, M.-L. Bocquet, and L. Bocquet, New Avenues for the Large-scale Harvesting of Blue Energy. Nature Reviews Chemistry, 2017. 1(11): p. 0091.
    [32] S. Chu and A. Majumdar, Opportunities and Challenges for a Sustainable Energy Future. Nature, 2012. 488(7411): p. 294-303.
    [33] J.W. Post, J. Veerman, H.V. Hamelers, G.J. Euverink, S.J. Metz, K. Nymeijer, and C.J. Buisman, Salinity-gradient Power: Evaluation of Pressure-retarded Osmosis and Reverse Electrodialysis. Journal of Membrane Science, 2007. 288(1-2): p. 218-230.
    [34] Y. Mei and C.Y. Tang, Recent Developments and Future Perspectives of Reverse Electrodialysis Technology: A Review. Desalination, 2018. 425: p. 156-174.
    [35] H.-K. Kim, M.-S. Lee, S.-Y. Lee, Y.-W. Choi, N.-J. Jeong, and C.-S. Kim, High Power Density of Reverse Electrodialysis with Pore-filling Ion Exchange Membranes and A High-open-area Spacer. Journal of Materials Chemistry A, 2015. 3(31): p. 16302-16306.
    [36] Y. Liu, M. Cui, W. Ling, L. Cheng, H. Lei, W. Li, and Y. Huang, Thermo-electrochemical Cells for Heat to Electricity Conversion: from Mechanisms, Materials, Strategies to Applications. Energy & Environmental Science, 2022. 15(9): p. 3670-3687.
    [37] J.A. Wood, A.M. Benneker, and R.G. Lammertink, Temperature Effects on the Electrohydrodynamic and Electrokinetic Behaviour of Ion-Selective Nanochannels. Journal of Physics: Condensed Matter, 2016. 28(11): p. 114002.
    [38] Z.-Q. Li, G.-L. Zhu, R.-J. Mo, M.-Y. Wu, X.-L. Ding, L.-Q. Huang, and X.-H. Xia, Nanochannels for Low-grade Energy Harvesting. Current Opinion in Electrochemistry, 2022. 33: p. 100956.
    [39] L. Bocquet and E. Charlaix, Nanofluidics, from Bulk to Interfaces. Chemical Society Reviews, 2010. 39(3): p. 1073-1095.
    [40] R.B. Schoch, J. Han, and P. Renaud, Transport Phenomena in Nanofluidics. Reviews of Modern Physics, 2008. 80(3): p. 839.
    [41] F.H. van der Heyden, D.J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, Power Generation by Pressure-driven Transport of Ions in Nanofluidic Channels. Nano Letters, 2007. 7(4): p. 1022-1025.
    [42] R. Li, J. Jiang, Q. Liu, Z. Xie, and J. Zhai, Hybrid Nanochannel Membrane Based on Polymer/MOF for High-performance Salinity Gradient Power Generation. Nano Energy, 2018. 53: p. 643-649.
    [43] T. Xiao, X. Li, Z. Liu, B. Lu, J. Zhai, and X. Diao, Low-cost 2D Nanochannels As Biomimetic Salinity-and Heat-gradient Power Generators. Nano Energy, 2022. 103: p. 107782.
    [44] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, and A. Radenovic, Single-layer MoS2 Nanopores As Nanopower Generators. Nature, 2016. 536(7615): p. 197-200.
    [45] D.G. Haywood, A. Saha-Shah, L.A. Baker, and S.C. Jacobson, Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Analytical Chemistry, 2015. 87(1): p. 172-187.
    [46] S. Hong, J.K. El-Demellawi, Y. Lei, Z. Liu, F.A. Marzooqi, H.A. Arafat, and H.N. Alshareef, Porous Ti3C2Tx MXene Membranes for Highly Efficient Salinity Gradient Energy Harvesting. ACS Nano, 2022. 16(1): p. 792-800.
    [47] Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian, Y. Sun, X. Zhao, W. Chen, L. Jiang, and L. Wen, Enhanced Ion Transport by Graphene Oxide/Cellulose Nanofibers Assembled Membranes for High-performance Osmotic Energy Harvesting. Materials Horizons, 2020. 7(10): p. 2702-2709.
    [48] X. Zhang, H. Liu, and L. Jiang, Wettability and Applications of Nanochannels. Advanced Materials, 2019. 31(5): p. 1804508.
    [49] R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, and M. Atieh, XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods. Ceramics International, 2019. 45(11): p. 14439-14448.
    [50] J. Kim, L.J. Cote, and J. Huang, Two Dimensional Soft Material: New Faces of Graphene Oxide. Accounts of Chemical Research, 2012. 45(8): p. 1356-1364.
    [51] Z. Zhang, L. Wen, and L. Jiang, Nanofluidics for Osmotic Energy Conversion. Nature Reviews Materials, 2021. 6(7): p. 622-639.
    [52] W. Gao, The chemistry of graphene oxide. Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications. 2015. 61-95.
    [53] J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, and J. Huang, Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society, 2010. 132(23): p. 8180-8186.
    [54] A. Ude, R. Eshkoor, R. Zulkifili, A. Ariffin, A. Dzuraidah, and C. Azhari, Bombyx mori Silk Fibre and Its Composite: a Review of Contemporary Developments. Materials & Design, 2014. 57: p. 298-305.
    [55] C. Holland, K. Numata, J. Rnjak‐Kovacina, and F.P. Seib, The Biomedical Use of Silk: Past, Present, Future. Advanced Healthcare Materials, 2019. 8(1): p. 1800465.
    [56] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, and D.L. Kaplan, Silk-based Biomaterials. Biomaterials, 2003. 24(3): p. 401-416.
    [57] J. Chen, W. Xin, X.-Y. Kong, Y. Qian, X. Zhao, W. Chen, Y. Sun, Y. Wu, L. Jiang, and L. Wen, Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Letters, 2019. 5(3): p. 742-748.
    [58] W. Xin, Z. Zhang, X. Huang, Y. Hu, T. Zhou, C. Zhu, X.-Y. Kong, L. Jiang, and L. Wen, High-performance Silk-based Hybrid Membranes Employed for Osmotic Energy Conversion. Nature Communications, 2019. 10(1): p. 3876.
    [59] Z. Zhang, W. Shen, L. Lin, M. Wang, N. Li, Z. Zheng, F. Liu, and L. Cao, Vertically Transported Graphene Oxide for High‐performance Osmotic Energy Conversion. Advanced Science, 2020. 7(12): p. 2000286.
    [60] R.F. Pereira, M.M. Silva, and V. de Zea Bermudez, Bombyx mori Silk Fibers: an Outstanding Family of Materials. Macromolecular Materials and Engineering, 2015. 300(12): p. 1171-1198.
    [61] S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M.J. Buehler, and D.L. Kaplan, Biopolymer Nanofibrils: Structure, Modeling, Preparation, and Applications. Progress in Polymer Science, 2018. 85: p. 1-56.
    [62] A. Matsumoto, J. Chen, A.L. Collette, U.-J. Kim, G.H. Altman, P. Cebe, and D.L. Kaplan, Mechanisms of Silk Fibroin Sol−gel Transitions. The Journal of Physical Chemistry B, 2006. 110(43): p. 21630-21638.
    [63] J. Zhong and C. Huang, Influence Factors of Thermal Driven Ion Transport in Nano-channel for Thermoelectricity Application. International Journal of Heat and Mass Transfer, 2020. 152: p. 119501.
    [64] Y. Yang, X. Zhang, Z. Tian, G. Deissmann, D. Bosbach, P. Liang, and M. Wang, Thermodiffusion of Ions in Nanoconfined Aqueous Electrolytes. Journal of Colloid and Interface Science, 2022. 619: p. 331-338.
    [65] M. Dietzel and S. Hardt, Thermoelectricity in Confined Liquid Electrolytes. Physical Review Letters, 2016. 116(22): p. 225901.
    [66] Y. Wu, T. Zhou, Y. Wang, Y. Qian, W. Chen, C. Zhu, B. Niu, X.-Y. Kong, Y. Zhao, and X. Lin, The Synergistic Effect of Space and Surface Charge on Nanoconfined Ion Transport and Nanofluidic Energy Harvesting. Nano Energy, 2022. 92: p. 106709.
    [67] R.B. Schoch, H. Van Lintel, and P. Renaud, Effect of The Surface Charge on Ion Transport Through Nanoslits. Physics of Fluids, 2005. 17(10).
    [68] K.H. Bhatt, S. Grego, and O.D. Velev, An AC Electrokinetic Technique for Collection and Concentration of Particles and Cells on Patterned Electrodes. Langmuir, 2005. 21(14): p. 6603-6612.
    [69] Y. Gu and D. Li, The ζ-potential of Glass Surface in Contact with Aqueous Solutions. Journal of Colloid and Interface Science, 2000. 226(2): p. 328-339.
    [70] J. Lyklema and J.T.G. Overbeek, On the Interpretation of Electrokinetic Potentials. Journal of Colloid Science, 1961. 16(5): p. 501-512.
    [71] W. Qu and D. Li, A Model for Overlapped EDL Fields. Journal of Colloid and Interface Science, 2000. 224(2): p. 397-407.
    [72] D.J. Griffiths, Introduction to Electrodynamics. 2023: Cambridge University Press.
    [73] G. Pardon and W. van der Wijngaart, Modeling and Simulation of Electrostatically Gated Nanochannels. Advances in Colloid and Interface Science, 2013. 199: p. 78-94.
    [74] V.-P. Mai, W.-H. Huang, and R.-J. Yang, Charge Regulation and pH Effects on Thermo-osmotic Conversion. Nanomaterials, 2022. 12(16): p. 2774.
    [75] T. Sen and M. Barisik, Size Dependent Surface Charge Properties of Silica Nano-channels: Double Layer Overlap and Inlet/Outlet Effects. Physical Chemistry Chemical Physics, 2018. 20(24): p. 16719-16728.
    [76] Z. Ge and Y. Wang, Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations. The Journal of Physical Chemistry B, 2017. 121(15): p. 3394-3402.
    [77] B. Konkena and S. Vasudevan, Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide Through pKa Measurements. The Journal of Physical Chemistry Letters, 2012. 3(7): p. 867-872.
    [78] X. Qiao, R. Miller, E. Schneck, and K. Sun, Influence of pH on the Surface and Foaming Properties of Aqueous Silk Fibroin Solutions. Soft Matter, 2020. 16(15): p. 3695-3704.
    [79] J. Lyklema and M. Minor, On Surface Conduction and Its Role in Electrokinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 140(1-3): p. 33-41.
    [80] D. Stein, M. Kruithof, and C. Dekker, Surface-charge-governed Ion Transport in Nanofluidic Channels. Physical Review Letters, 2004. 93(3): p. 035901.
    [81] A. Würger, Transport in Charged Colloids Driven by Thermoelectricity. Physical Review Letters, 2008. 101(10): p. 108302.
    [82] L. Fu, S. Merabia, and L. Joly, What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics. Physical Review Letters, 2017. 119(21): p. 214501.
    [83] S. Sun, M. Li, X.L. Shi, and Z.G. Chen, Advances in Ionic Thermoelectrics: from Materials to Devices. Advanced Energy Materials, 2023. 13(9): p. 2203692.
    [84] D. Zhao, A. Würger, and X. Crispin, Ionic Thermoelectric Materials and Devices. Journal of Energy Chemistry, 2021. 61: p. 88-103.
    [85] A. Würger, Thermal Non-equilibrium Transport in Colloids. Reports on Progress in Physics, 2010. 73(12): p. 126601.
    [86] W.Q. Chen, A.P. Jivkov, and M. Sedighi, Thermo-osmosis in Charged Nanochannels: Effects of Surface Charge and Ionic Strength. ACS Applied Materials & Interfaces, 2023. 15(28): p. 34159-34171.
    [87] W.Q. Chen, M. Sedighi, and A.P. Jivkov, Thermo-osmosis in Hydrophilic Nanochannels: Mechanism and Size Effect. Nanoscale, 2021. 13(3): p. 1696-1716.
    [88] Z. Li, Y. He, S. Yan, H. Li, J. Chen, C. Zhang, C. Li, Y. Zhao, Y. Fan, and C. Guo, A Novel Silk Fibroin-Graphene Oxide Hybrid for Reinforcing Corrosion Protection Performance of Waterborne Epoxy Coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. 634: p. 127959.
    [89] C. Zhu, P. Liu, B. Niu, Y. Liu, W. Xin, W. Chen, X.-Y. Kong, Z. Zhang, L. Jiang, and L. Wen, Metallic Two-dimensional MoS2 Composites as High-performance Osmotic Energy Conversion Membranes. Journal of the American Chemical Society, 2021. 143(4): p. 1932-1940.
    [90] A. Debethune, T. Licht, and N. Swendeman, The Temperature Coefficients of Electrode Potentials: the Isothermal and Thermal Coefficients—the Standard Ionic Entropy of Electrochemical Transport of the Hydrogen Ion. Journal of The Electrochemical Society, 1959. 106(7): p. 616.
    [91] L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng, J. Yang, X. Zhang, N. Li, W. Guo, and L. Jiang, Anomalous Channel‐length Dependence in Nanofluidic Osmotic Energy Conversion. Advanced Functional Materials, 2017. 27(9): p. 1604302.
    [92] S. Hong, C. Constans, M.V. Surmani Martins, Y.C. Seow, J.A. Guevara Carrio, and S. Garaj, Scalable Graphene-based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity. Nano Letters, 2017. 17(2): p. 728-732.

    無法下載圖示 校內:2029-08-23公開
    校外:2029-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE