| 研究生: |
林知潁 Lin, Jhih-Ying |
|---|---|
| 論文名稱: |
Alloxan誘導蘭嶼豬之糖尿病及DW基質對於傷口癒合之影響 Alloxan-induced diabetes and the effects of DW matrix on wound healing in Lanyu pigs |
| 指導教授: |
黃玲惠
Huang, Ling-Huei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 糖尿病 、蘭嶼豬 、傷口癒合 |
| 外文關鍵詞: | diabetes, Lanyu pig, wound healing |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據國際糖尿病聯盟(IDF)報導,2019年全球已有4.63億人患有糖尿病。糖尿病患者會出現如蛋白尿、視力衰退及手腳麻痺之併發症。此外,有時更嚴重危及生命安全之症狀,如失明及截肢,其中傷口癒合緩慢為糖尿病患者最常出現之問題。然而,過去由於研究豬隻傷口癒合太快速,不易看出藥物效果之差別。故本研究應用H-04及BE酵素在癒合較慢的糖尿病動物上。首先以alloxan建立高血糖的糖尿病蘭嶼豬模式及傷口開創。於結果顯示,在誘導一個月後,血糖值高於400 mg/dl且血糖沒有下降的糖尿病豬有六頭。而且,誘導後的糖尿病豬也發現體重減輕、脂肪減少,且胰臟組織也發現大量的胰島細胞死亡。而在正常豬與糖尿病豬傷口癒合方面,糖尿病豬在2.5 × 2.5 cm2傷口癒合方面有緩慢之趨勢,且傷口血流訊號值偏低、膠原蛋白沉積緩慢。接下來在第0天即放入含有0 - 500 IU/mL濃度之H-04的DW matrix於糖尿病豬的6 × 6 cm2之傷口,並在開創傷口後3 - 9天再利用BE酵素對傷口進行去腐皮。整體結果顯示,含有50 IU/mL之H-04的DW matrix且搭配BE酵素治療相比於其他劑量有傷口閉合及收縮較快之趨勢。綜合來說,含有H-04 50 IU/mL的DW matrix加速傷口癒合且搭配BE酵素可以在傷口癒合早期階段加速去除腐皮。
According to the International Diabetes Federation (IDF) report, there were 463 million people worldwide in the face of diabetes in 2019. Once patients due with diabetes, they have to experience complications such as proteinuria, vision loss, hand, and foot paralysis. Moreover, it sometimes happens with more serious life-threatening symptoms like blindness and amputation in which slow wound healing is the most common problem in diabetic patients. However, in the past, due to the wound healing too fast on the pig wound, it’s difficult to distinguish the drug effect. Thus, in this study, the H-04 and BE enzyme was used to apply on the diabetic animals with slower healing. Alloxan first was used to establish a model of the diabetic Lanyu pig with high blood sugar with the wound. The results showed there were six diabetic pigs which have blood glucose higher than 400 mg/dl and there was no decrease in blood glucose level after one month of induction. Also, induced-diabetic pigs have been found in weight loss, adipose tissue reduction, and a huge number of cell dead in pancreas. From the point of view of wound healing between the diabetic pig and the normal pig, the diabetic pig tended to heal slowly at 2.5 × 2.5 cm2 wounds, with low blood flow signal values and slow collagen deposition. Next, Diabetes Wound (DW) matrix consists 0 - 500 IU/mL of H-04 was used to put on the wounds at the sizes of 6 × 6 cm2 in the diabetic pig at day 0 and BE enzyme was used to peel skin from day 3 to day 9 post-operative. The results showed among of them, H-04 50 IU/mL in DW matrix and BE enzyme treatment showed a faster tendency of wound closure and wound contraction than other groups. In summary, DW matrix consists H-04 50 IU/mL accelerates the effect of wound healing and BE enzyme promotes in peeling dead skin in the early stage of wound healing.
王鈺斌,蘭嶼豬傷口陣列模式之建立,國立成功大學生物科技研究所碩士論文,2014。
李易,DIB於糖尿病下肢缺血小鼠治療之研究,國立成功大學生物科技研究所碩士論文,2016。
范震宇,蘭嶼豬傷口護理模式研究,國立成功大學生物科技研究所碩士論文,2016。
梁志文,蘭嶼豬糖尿病模式建立與傷口癒合研究,國立成功大學生物科技研究所碩士論文,2017。
Ahima, R.S. Connecting obesity, aging and diabetes. Nature Medicine 15, 996-997, 2009.
Al Dieri, R., Alban, S., Beguin, S., and Coenraad Hemker, H. Thrombin generation for the control of heparin treatment, comparison with the activated partial thromboplastin time. Journal of Thrombosis and Haemostasis 2, 1395-1401, 2004.
Association, A.D. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care 42, S13-S28, 2019.
Badin, J.K., Kole, A., Stivers, B., Progar, V., Pareddy, A., Alloosh, M., and Sturek, M. Alloxan-induced diabetes exacerbates coronary atherosclerosis and calcification in Ossabaw miniature swine with metabolic syndrome. Journal of Translational Medicine 16, 58, 2018.
Badin, J.K., Progar, V., Pareddy, A., Cagle, J., Alloosh, M., and Sturek, M. Effect of Age on Diabetogenicity of Alloxan in Ossabaw miniature swine. Comparative Medicine 69, 114-122, 2019.
Baird, A., Mormède, P. and Bőhlen, P. Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor. Biochemical and Biophysical Research Communications 126, 358-364, 1985.
Baltzis, D., Eleftheriadou, I., and Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Advances in Therapy 31, 817-836, 2014.
Bankir, L., Ahloulay, M., Bouby, N., Trinh-Trang-Tan, M.M., Machet, F., Lacour, B. and Jungers, P. Is the process of urinary urea concentration responsible for a high glomerular filtration rate? Journal of the American Society of Nephrology 4, 1091-1103, 1993.
Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V. and Wolf, R. Structure and function of the epidermis related to barrier properties. Clinics in Dermatology 30, 257-262, 2012.
Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., and Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair and Regeneration 16, 585-601, 2008.
Beer, H.-D., Longaker, M.T., and Werner, S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. Journal of Investigative Dermatology 109, 132-138, 1997.
Bellinger, D.A., Merricks, E.P., and Nichols, T.C. Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. Journal of the Institute for Laboratory Animal Research 47, 243-258, 2006.
Benech-Kieffer, F., Wegrich, P., Schwarzenbach, R., Klecak, G., Weber, T., Leclaire, J., and Schaefer, H. Percutaneous absorption of sunscreens in vitro: interspecies comparison, skin models and reproducibility aspects. Skin Pharmacology and Physiology 13, 324-335, 2000.
Bernardi, L., Spallone, V., Stevens, M., Hilsted, J., Frontoni, S., Pop‐Busui, R., Ziegler, D., Kempler, P., Freeman, R., Low, P. and Tesfaye, S. Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metabolism Research and Reviews 27, 654-664, 2011.
Black, E., Vibe-Petersen, J., Jorgensen, L.N., Madsen, S.M., Ågren, M.S., Holstein, P.E., Perrild, H., and Gottrup, F. Decrease of collagen deposition in wound repair in type 1 diabetes independent of glycemic control. Archives of Surgery 138, 34-40, 2003.
Boullion, R.D., Mokelke, E.A., Wamhoff, B.R., Otis, C.R., Wenzel, J., Dixon, J.L., and Sturek, M. Porcine model of diabetic dyslipidemia: insulin and feed algorithms for mimicking diabetes mellitus in humans. Comparative Medicine 53, 42-52, 2003.
Bowling, F.L., Rashid, S.T., and Boulton, A.J. Preventing and treating foot complications associated with diabetes mellitus. Nature Reviews Endocrinology 11, 606, 2015.
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254, 1976.
Brückmann, G., and Wertheimer, E. Alloxan studies: the action of alloxan homologues and related compounds. Journal of Biological Chemistry 168, 241-256, 1947.
Brancato, S.K., and Albina, J.E. Wound macrophages as key regulators of repair: origin, phenotype, and function. American Journal of Pathology 178, 19-25, 2011.
Brem, H., and Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. Journal of Clinical Investigation 117, 1219-1222, 2007.
Briggaman, R.A., Schechter, N.M., Fraki, J., and Lazarus, G.S. Degradation of the epidermal-dermal junction by proteolytic enzymes from human skin and human polymorphonuclear leukocytes. Journal of Experimental Medicine 160, 1027-1042, 1984.
Brown, D.L., Kao, W.W., and Greenhalgh, D.G. Apoptosis down-regulates inflammation under the advancing epithelial wound edge: delayed patterns in diabetes and improvement with topical growth factors. Surgery 121, 372-380, 1997.
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820, 2001.
Caputo, R. and Peluchetti, D. The junctions of normal human epidermis: a freeze-fracture study. Journal of Ultrastructure Research 61, 44-61, 1977.
Chacon, J.M.F., de Andrea, M.L.M., Blanes, L., and Ferreira, L.M. Effects of topical application of 10,000 IU heparin on patients with perineal dermatitis and second-degree burns treated in a public pediatric hospital. Journal of Tissue Viability 19, 150-158, 2010.
Chakravarthy, B.K., Gupta, S. and Gode, K.D. Functional beta cell regeneration in the islets of pancreas in alloxan induced diabetic rats by (-)-epicatechin. Life Sciences 31, 2693-2697, 1982.
Cheng, D. Prevalence, predisposition and prevention of type II diabetes. Nutrition and Metabolism 2, 29, 2005.
Chistiakov, D.A., Myasoedova, V.A., Revin, V.V., Orekhov, A.N., and Bobryshev, Y.V. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology 223, 101-111, 2018.
Coelho, P.G., Pippenger, B., Tovar, N., Koopmans, S.J., Plana, N.M., Graves, D.T., Engebretson, S., van Beusekom, H.M., Oliveira, P.G., and Dard, M. Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model: a pilot study. Journal of Oral and Maxillofacial Surgery 76, 1677-1687, 2018.
Dabelea, D., Rewers, A., Stafford, J.M., Standiford, D.A., Lawrence, J.M., Saydah, S., Imperatore, G., D’Agostino, R.B., Mayer-Davis, E.J., and Pihoker, C. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the search for diabetes in youth study. Pediatrics 133, e938-e945, 2014.
Del-Razo, L.M., García-Vargas, G.G., Valenzuela, O.L., Castellanos, E.H., Sánchez-Peña, L.C., Currier, J.M., Drobná, Z., Loomis, D. and Stýblo, M. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapan and Lagunera regions in Mexico. Environmental Health 10, 73, 2011.
Desmouliere, A., Redard, M., Darby, I., and Gabbiani, G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. The American Journal of Pathology 146, 56, 1995.
Doster, W. and Longeville, S. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells. Biophysical Journal 93, 1360-1368, 2007.
Dovi, J.V., Szpaderska, A.M., and DiPietro, L.A. Neutrophil function in the healing wound: adding insult to injury? Thrombosis and Haemostasis 92, 275-280, 2004.
Ellis, S., Lin, E.J., and Tartar, D. Immunology of wound healing. Current Dermatology Reports 7, 350-358, 2018.
Elsner, M., Tiedge, M., Guldbakke, B., Munday, R., and Lenzen, S. Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia 45, 1542-1549, 2002.
Eming, S.A., Martin, P., and Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Science Translational Medicine 6, 265-266, 2014.
Federation I.D. Diabetes prevalence in 2019 and projections. IDF Diabetes Atlas, International Diabetes Federation, Belgium, 6-7, 2019.
Federiuk, I.F., Casey, H.M., Quinn, M.J., Wood, M.D. and Ward, K.W. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comparative Medicine 54, 252-257, 2004.
Flynn, M.D., Boolell, M., Tooke, J.E. and Watkins, P.J. The effect of insulin infusion on capillary blood flow in the diabetic neuropathic foot. Diabetic Medicine 9, 630-634, 1992.
Fox, R.H., Solman, A.J., Isaacs, R., Fry, A.J. and MacDonald, I.C. A new method for monitoring deep body temperature from the skin surface. Clinical Science and Molecular Medicine 44, 81-86, 1973.
Galiano, R.D., Tepper, O.M., Pelo, C.R., Bhatt, K.A., Callaghan, M., Bastidas, N., Bunting, S., Steinmetz, H.G., and Gurtner, G.C. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. The American Journal of Pathology 164, 1935-1947, 2004.
George Broughton, I., Janis, J.E., and Attinger, C.E. The basic science of wound healing. Plastic and Reconstructive Surgery 117, 12S-34S, 2006.
Goodman, H.M. Hormonal regulation of fuel metabolism. Basic Medical Endocrinology. Academic Press, America, 178-182, 2003
Greenhalgh, D.G. The role of apoptosis in wound healing. The International Journal of Biochemistry and Cell Biology 30, 1019-1030, 1998.
Greenhalgh, D.G. Tissue repair in models of diabetes mellitus. Wound Healing, Humana Press, America, 181-189, 2003.
Groeneveld, Y., Petri, H., Hermans, J. and Springer, M.P. Relationship between blood glucose level and mortality in type 2 diabetes mellitus: a systematic review. Diabetic Medicine 16, 2-13, 1999.
Han, G., and Ceilley, R. Chronic wound healing: a review of current management and treatments. Advances in Therapy 34, 599-610, 2017.
Han, G., Nguyen, L.N., Macherla, C., Chi, Y., Friedman, J.M., Nosanchuk, J.D., and Martinez, L.R. Nitric oxide–releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. The American Journal of Pathology 180, 1465-1473, 2012.
Hand, M.S., Surwit, R.S., Rodin, J., Van Order, P., and Feinglos, M.N. Failure of genetically selected miniature swine to model NIDDM. Diabetes 36, 284-287, 1987.
Hara, H., Miwa, I. and Okuda, J. Inhibition of rat liver glucokinase by alloxan and ninhydrin. Chemical and Pharmaceutical Bulletin 34, 4731-4737, 1986.
Haukipuro, K., Melkko, J., Risteli, L., Kairaluoma, M., and Risteli, J. Synthesis of type I collagen in healing wounds in humans. Annals of Surgery 213, 75, 1991.
Heinemann, L. and Freckmann, G. Quality of HbA1c measurement in the practice: the German perspective. Journal of Diabetes Science and Technology 9, 687-695, 2015.
Herrath, V.M. and Nepom, G.T. Animal models of human type 1 diabetes. Nature Immunology 10, 129-132, 2009.
Hsu, S.L., Yin, T.C., Shao, P.L., Chen, K.H., Wu, R.W., Chen, C.C., Lin, P.Y., Chung, S.Y., Sheu, J.J., and Sung, P.H. Hyperbaric oxygen facilitates the effect of endothelial progenitor cell therapy on improving outcome of rat critical limb ischemia. American Journal of Translational Research 11, 1948, 2019.
Hsu, Y.C., Li, L., and Fuchs, E. Emerging interactions between skin stem cells and their niches. Nature Medicine 20, 847, 2014.
Ismail, K. Eating disorders and diabetes. Psychiatry 7, 179-182, 2008.
Italiani, P. and Boraschi, D. From monocytes to M1/M2 macrophages: phenotypical versus functional differentiation. Frontiers in Immunology 5, 514, 2014.
Jabłońska-Trypuć, A., Matejczyk, M., and Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of Enzyme Inhibition and Medicinal Chemistry 31, 177-183, 2016.
Jameson, J., Ugarte, K., Chen, N., Yachi, P., Fuchs, E., Boismenu, R., and Havran, W.L. A role for skin γδ T cells in wound repair. Science 296, 747-749, 2002.
Jensen-Waern, M., Andersson, M., Kruse, R., Nilsson, B., Larsson, R., Korsgren, O., and Essén-Gustavsson, B. Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism. Laboratory Animals 43, 249-254, 2009.
Jorns, A., Munday, R., Tiedge, M., and Lenzen, S. Comparative toxicity of alloxan, N-alkylalloxans and ninhydrin to isolated pancreatic islets in vitro. Journal of Endocrinology 155, 283-294, 1997.
Kalish, J., and Hamdan, A. Management of diabetic foot problems. Journal of Vascular Surgery 51, 476-486, 2010.
Kakkar, R., Bhandari, M. and Gaba, R. Tautomeric transformations and reactivity of alloxan. Computational and Theoretical Chemistry 986, 14-24, 2012.
Kanda, N., Morimoto, N., Ayvazyan, A.A., Takemoto, S., Kawai, K., Nakamura, Y., Sakamoto, Y., Taira, T., and Suzuki, S. Evaluation of a novel collagen–gelatin scaffold for achieving the sustained release of basic fibroblast growth factor in a diabetic mouse model. Journal of Tissue Engineering and Regenerative Medicine 8, 29-40, 2014.
Kaufman, F.R. Type 2 diabetes in children and youth. Endocrinology and Metabolism Clinics 34, 659-676, 2005.
Ketnawa, S., Chaiwut, P., and Rawdkuen, S. Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing 90, 385-391, 2012.
Khalil, N., Corne, S., Whitman, C. and Yacyshyn, H. Plasmin regulates the activation of cell-associated latent TGF-beta 1 secreted by rat alveolar macrophages after in vivo bleomycin injury. American Journal of Respiratory Cell and Molecular Biology 15, 252-259, 1996.
Khan, R., and Khan, M.H. Use of collagen as a biomaterial: an update. Journal of Indian Society of Periodontology 17, 539, 2013.
Khanna, S., Biswas, S., Shang, Y., Collard, E., Azad, A., Kauh, C., Bhasker, V., Gordillo, G.M., Sen, C.K., and Roy, S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 5, e9539, 2010.
Khatib, M., Jabir, S., Fitzgerald O’Connor, E., and Philp, B. A systematic review of the evolution of laser Doppler techniques in burn depth assessment. Plastic Surgery International 2014, 621792, 2014.
King, A.J. The use of animal models in diabetes research. British Journal of Pharmacology 166, 877-894, 2012.
King, J.L., Mason, J.O., Cartner, S.C., and Guidry, C. The influence of alloxan-induced diabetes on Müller cell contraction-promoting activities in vitreous. Investigative Ophthalmology and Visual Science 52, 7485-7491, 2011.
Kraakman, M.J., Murphy, A.J., Jandeleit-Dahm, K., and Kammoun, H.L. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Frontiers in Immunology 5, 470, 2014.
Kratz, G., Back, M., Arnander, C., and Larm, O. Immobilised heparin accelerates the healing of human wounds in vivo. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery 32, 381-386, 1998.
Kumar, S., Singh, R., Vasudeva, N., and Sharma, S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovascular Diabetology 11, 9, 2012.
Kunkemoeller, B., and Kyriakides, T.R. Redox signaling in diabetic wound healing regulates extracellular matrix deposition. Antioxidants and Redox Signaling 27, 823-838, 2017.
Kuo, Y.R., Wang, C.T., Wang, F.S., Chiang, Y.C., and Wang, C.J. Extracorporeal shock‐wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ‐induced diabetes. Wound Repair and Regeneration 17, 522-530, 2009.
Larsen, M.O., and Rolin, B. Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. Journal of the Institute for Laboratory Animal Research 45, 303-313, 2004.
Lau, K., Paus, R., Tiede, S., Day, P., and Bayat, A. Exploring the role of stem cells in cutaneous wound healing. Experimental Dermatology 18, 921-933, 2009.
Leary, T., Jones, P.L., Appleby, M., Blight, A., Parkinson, K. and Stanley, M. Epidermal keratinocyte self-renewal is dependent upon dermal integrity. Journal of Investigative Dermatology 99, 422-430, 1992.
Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51, 216-226, 2008.
Lerman, O.Z., Galiano, R.D., Armour, M., Levine, J.P., and Gurtner, G.C. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. The American Journal of Pathology 162, 303-312, 2003.
Lewis, M., and De Maria, F. A practical method for the biological assay of heparin. Journal of the American Pharmaceutical Association 38, 441-443, 1949.
Li, J., Zhang, Y.P. and Kirsner, R.S. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microscopy Research and Technique 60, 107-114, 2003.
Li, Y., Nishimura, T., Teruya, K., Maki, T., Komatsu, T., Hamasaki, T., Kashiwagi, T., Kabayama, S., Shim, S.Y., Katakura, Y. and Osada, K. Protective mechanism of reduced water against alloxan-induced pancreatic β-cell damage: Scavenging effect against reactive oxygen species. Cytotechnology 40, 139-149, 2002.
Lo, A.L., Tyrell, R.O., Golarz, S.R. and Jones, C.M. Reducing Wound Hemorrhage: Use of bilayer collagen matrix in chronic myelogenous leukemia. Plastic and Reconstructive Surgery Global Open 7, 1-3, 2019.
Lord, S.T. Fibrinogen and fibrin: scaffold proteins in hemostasis. Current Opinion in Hematology 14, 236-241, 2007.
Macdonald Ighodaro, O., Mohammed Adeosun, A., and Adeboye Akinloye, O. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 53, 365-374, 2017.
Macedo, G.M.C., Nunes, S. and Barreto, T. Skin disorders in diabetes mellitus: an epidermiology and physiopathology review. Diabetology and Metabolic Syndrome 8, 63, 2016.
Makris, K. and Spanou, L. Is there a relationship between mean blood glucose and glycated hemoglobin? Journal of Diabetes Science and Technology 5, 1572-1583, 2011.
Manderson, A.P., Kay, J.G., Hammond, L.A., Brown, D.L. and Stow, J.L. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFα. The Journal of Cell Biology 178, 57-69, 2007.
Mandla, S., Davenport Huyer, L., and Radisic, M. Review: Multimodal bioactive material approaches for wound healing. American Institute of Physics Bioengineering 2, 021503, 2018.
Martin, P. Wound healing aiming for perfect skin regeneration. Science 276, 75-81, 1997.
Mbongue, J.C., Nieves, H.A., Torrez, T.W., and Langridge, W.H. The role of dendritic cell maturation in the induction of insulin-dependent diabetes mellitus. Frontiers in Immunology 8, 327, 2017.
Mésangeau, D., Laude, D., and Elghozi, J.L. Early detection of cardiovascular autonomic neuropathy in diabetic pigs using blood pressure and heart rate variability. Cardiovascular Research 45, 889-899, 2000.
Mir, S.H., and Darzi, M.M. Histopathological abnormalities of prolonged alloxan‐induced diabetes mellitus in rabbits. International Journal of Experimental Pathology 90, 66-73, 2009.
Mirza, R.E., Fang, M.M., Novak, M.L., Urao, N., Sui, A., Ennis, W.J., and Koh, T.J. Macrophage PPARgamma and impaired wound healing in type 2 diabetes. The Journal of Pathology 236, 433-444, 2015.
Munday, R., Ludwig, K., and Lenzen, S. The relationship between the physicochemical properties and the biological effects of alloxan and several N-alkyl substituted alloxan derivatives. Journal of Endocrinology 139, 153-163, 1993.
Munder, M., Mallo, M., Eichmann, K. and Modolell, M. Murine macrophages secrete interferon γ upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. The Journal of Experimental Medicine 187, 2103-2108, 1998.
Murray, B. and Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and atheletes. Nutrition Reviews 76, 243-259, 2018.
Mustoe, T.A., O'Shaughnessy, K., and Kloeters, O. Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plastic and Reconstructive Surgery 117, 35S-41S, 2006.
Nguyen, A.V., and Soulika, A.M. The dynamics of the skin’s immune system. International Journal of Molecular Sciences 20, 1811, 2019.
Nitta, A., Murai, R., Suzuki, N., Ito, H., Nomoto, H., Katoh, G., Furukawa, Y. and Furukawa, S. Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicology and Teratology 24, 695-701, 2002.
Nor, M.Z.M., Ramchandran, L., Duke, M., and Vasiljevic, T. Performance of a two-stage membrane system for bromelain separation from pineapple waste mixture as impacted by enzymatic pretreatment and diafiltration. Food Technology and Biotechnology 56, 218-227, 2018.
Nuyttens, B.P., Thijs, T., Deckmyn, H., and Broos, K. Platelet adhesion to collagen. Thrombosis Research 127, S26-S29, 2011.
Olczyk, P., Mencner, Ł., and Komosinska-Vassev, K. The role of the extracellular matrix components in cutaneous wound healing. BioMed Research International 2014, 1-8, 2014.
Oleszak, E.L., Zaczynska, E., Bhattacharjee, M., Butunoi, C., Legido, A. and Katsetos, C.D. Inducible nitric oxide synthase and nitrotyrosine are found in monocytes/macrophages and/or astrocytes in acute, but not in chronic, multiple sclerosis. Clinical and Diagnostic Laboratory Immunology 5, 438-445, 1998.
Otis, C.R., Wamhoff, B.R., and Sturek, M. Hyperglycemia-induced insulin resistance in diabetic dyslipidemic Yucatan swine. Comparative Medicine 53, 53-64, 2003.
Ozougwu, J., Obimba, K., Belonwu, C., and Unakalamba, C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. Journal of Physiology and Pathophysiology 4, 46-57, 2013.
Panepinto, L., and Phillips, R. The Yucatan miniature pig: characterization and utilization in biomedical research. Laboratory Animal Science 36, 344-347, 1986.
Peiser, L., and Gordon, S. The function of scavenger receptorsexpressed by macrophages and their rolein the regulation of inflammation. Microbes and Infection 3, 149-159, 2001.
Persson, F., and Rossing, P. Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney International Supplements 8, 2-7, 2018.
Phillips, R., Panepinto, L., Spangler, R., and Westmoreland, N. Yucatan miniature swine as a model for the study of human diabetes mellitus. Diabetes 31, 30-36, 1982.
Phillips, R.W., Westmoreland, N., Panepinto, L., and Case, G.L. Dietary effects on metabolism of Yucatan miniature swine selected for low and high glucose utilization. The Journal of Nutrition 112, 104-111, 1982.
Pipeleers, D. and Ling, Z. Pancreatic beta cells in insulin‐dependent diabetes. Diabetes Metabolism Reviews 8, 209-227, 1992.
Png, M.E., Yoong, J., Phan, T.P., and Wee, H.L. Current and future economic burden of diabetes among working-age adults in Asia: conservative estimates for Singapore from 2010-2050. BioMed Center Public Health 16, 153, 2016.
Portha, B., Giroix, M.H., Serradas, P., Movassat, J., Bailbe, D. and Kergoat, M. The neonatally streptozotocin-induced (n-STZ) diabetic rats, a family of NIDDM models. Animal Models in Diabetes, CRC Press, America, 231-251, 2000.
Pratipanawatr, W., Pratipanawatr, T., Cusi, K., Berria, R., Adams, J.M., Jenkinson, C.P., Maezono, K., DeFronzo, R.A. and Mandarino, L.J. Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes 50, 2572-2578, 2001.
Qiao, J.H., Mertens, R.B., Fishbein, M.C. and Geller, S.A. Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of enchondral ossification. Human Pathology 34, 402-407, 2003.
Radenkovic, M., Stojanovic, M., and Prostran, M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. Journal of Pharmacological and Toxicological Methods 78, 13-31, 2016.
Ragavan, B. and Krishnakumari, S. Effect of T. arjuna stem bark extract on histopathology of liver, kidney and pancreas of alloxan-induced diabetic rats. African Journal of Biomedical Research 9, 189-197, 2006.
Rees, D., and Alcolado, J. Animal models of diabetes mellitus. Diabetic Medicine 22, 359-370, 2005.
Reiber, G.E., Vileikyte, L., Boyko, E.d., Del Aguila, M., Smith, D.G., Lavery, L.A., and Boulton, A. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care 22, 157-162, 1999.
Reinke, J.M., and Sorg, H. Wound repair and regeneration. European Surgical Research 49, 35-43, 2012.
Renner, S., Braun-Reichhart, C., Blutke, A., Herbach, N., Emrich, D., Streckel, E., Wunsch, A., Kessler, B., Kurome, M., Bahr, A., Klymiuk, N., Krebs, S., Puk, O., Nagashima, H., Graw, J., Blum, H., Wanke, R., and Wolf, E. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62, 1505-1511, 2013.
Robertson, R.P. β-cell deterioration during diabetes: what’s in the gun? Trends in Endocrinology and Metabolism 20, 388-393, 2009.
Rohani, M.G., and Parks, W.C. Matrix remodeling by MMPs during wound repair. Matrix Biology 44, 113-121, 2015.
Rohilla, A. and Ali, S. Alloxan induced diabetes: mechanisms and effects. International Journal of Research in Pharmaceutical and Biomedical Sciences 3, 819-823, 2012.
Roper, S.O., Call, A., Leishman, J., Cole Ratcliffe, G., Mandleco, B.L., Dyches, T.T. and Marshall, E.S. Type 1 diabetes: children and adolescent’s knowledge and questions. Journal of Advanced Nursing 65, 1705-1714, 2009.
Rossing, P., Persson, F., and Frimodt-Møller, M. Prognosis and treatment of diabetic nephropathy: Recent advances and perspectives. Nephrologie and Therapeutique 14, S31-S37, 2018.
Sacks, D.B. Hemoglobin A1c in diabetes: panacea or pointless? Diabetes 62, 41-43, 2013.
Sahle, F.F., Gebre-Mariam, T., Dobner, B., WohIrab, J. and Neubert, R.H. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacology and Physiology 28, 42-55, 2015.
Salazar, J.J., Ennis, W.J., and Koh, T.J. Diabetes medications: impact on inflammation and wound healing. Journal of Diabetes and its Complications 30, 746-752, 2016.
Schultz, G.S., and Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair and Regeneration 17, 153-162, 2009.
Schulze, E., Witt, M., Fink, T., Hofer, A., and Funk, R. Immunohistochemical detection of human skin nerve fibers. Acta Histochemica 99, 301-309, 1997.
Schvarcz, E., Palmer, M., Ingberg, C.M., Aman, J. and Berne, C. Increased prevalence of upper gastrointestinal symptoms in long-term type 1 diabetes mellitus. Diabetic Medicine 13, 478-481, 1996.
Seaton, M., Hocking, A., and Gibran, N.S. Porcine models of cutaneous wound healing. Journal of the Institute for Laboratory Animal Research 56, 127-138, 2015.
Shirshin, E.A., Gurfinkel, Y.I., Priezzhev, A.V., Fadeev, V.V., Lademann, J., and Darvin, M.E. Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization. Scientific Reports 7, 1-10, 2017.
Silswal, N., Singh, A.K., Aruna, B., Mukhopadhyay, S., Ghosh, S. and Ehtesham, N.Z. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway. Biochemical and Biophysical Research Communications 334, 1092-1101, 2005.
Silverstein, J., Klingensmith, G., Copeland, K., Plotnick, L., Kaufman, F., Laffel, L., Deeb, L., Grey, M., Anderson, B., and Holzmeister, L.A. Care of children and adolescents with type 1 diabetes: a statement of the American Diabetes Association. Diabetes Care 28, 186-212, 2005.
Simon, G.S. and Dewey, W.L. The effects of streptozotocin-induced diabetes on the antinociceptive potency of morphine. Journal of Pharmacology and Experimental Therapeutics 218, 318-323, 1981.
Sims, P.J. and Wiedmer, T. The response of human platelets to activated components of the complement system. Immunology Today 12, 338-342, 1991.
Singer, A.J., McClain, S.A., Taira, B.R., Rooney, J., Steinhauff, N., and Rosenberg, L. Rapid and selective enzymatic debridement of porcine comb burns with bromelain-derived Debrase®: acute-phase preservation of noninjured tissue and zone of stasis. Journal of Burn Care and Research 31, 304-309, 2010.
Sinno, H., and Prakash, S. Complements and the wound healing cascade: an updated review. Plastic Surgery International 2013, 146764, 2013.
Srinivasan, K. and Ramarao, P. Animal model in type 2 diabetes research: An overview. Indian Journal of Medical Research 125, 451, 2007.
Stadelmann, W.K., Digenis, A.G., and Tobin, G.R. Physiology and healing dynamics of chronic cutaneous wounds. The American Journal of Surgery 176, 26S-38S, 1998.
Steele, C., Hagopian, W.A, Gitelman, S., Masharani, U., Cavaghan, M., Rother, K.I., Donaldson, D., Harlan, D.M., Bluestone, J. and Herold, K.C. Insulin secretion in type 1 diabetes. Diabetes 53, 426-433, 2004.
Stein, M., Keshav, S., Harris, N., and Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. Journal of Experimental Medicine 176, 287-292, 1992.
Sullivan, T.P., Eaglstein, W.H., Davis, S.C., and Mertz, P. The pig as a model for human wound healing. Wound Repair and Regeneration 9, 66-76, 2001.
Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research 50, 537-546, 2001.
Tan, G.S., Cheung, N., Simó, R., Cheung, G.C., and Wong, T.Y. Diabetic macular oedema. The Lancet Diabetes and Endocrinology 5, 143-155, 2017.
Thomas, D.R. Prevention and treatment of pressure ulcers. Journal of the American Medical Directors Association 7, 46-59, 2006.
Uzun, G., Mutluoğlu, M., Karagöz, H., Memiş, A., Karabacak, E., and Ay, H. Pitfalls of intralesional ozone injection in diabetic foot ulcers: a case study. Journal of the American College of Clinical Wound Specialists 4, 81-83, 2012.
Velander, P., Theopold, C., Hirsch, T., Bleiziffer, O., Zuhaili, B., Fossum, M., Hoeller, D., Gheerardyn, R., Chen, M., Visovatti, S., Svensson, H., Yao, F., and Eriksson, E. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair and Regeneration 16, 288-293, 2008.
Velnar, T., Bailey, T. and Smrkolj, V. The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research 37, 1528-1542, 2009.
Vestweber, D. How leukocytes cross the vascular endothelium. Nature Reviews Immunology 15, 692-704, 2015.
Watkins, P.J. and Thomas, P.K. Diabetes mellitus and the nervous system. Journal of Neurology, Neurosurgery and Psychiatry 65, 620-632, 1998.
Wei, L., Lu, Y., He, S., Jin, X., Zeng, L., Zhang, S., Chen, Y., Tian, B., Mai, G., Yang, G. and Zhang, J. Induction of diabetes with signs of autoimmunity in primates by the injection of multiple-low-dose streptozotocin. Biochemical and Biophysical Research Communications 412, 373-378, 2011.
Wilson, J.D., Dhall, D.P., Simeonovic, C.J., and Lafferty, K.J. Induction and management of diabetes mellitus in the pig. Australian Journal of Experimental Biology and Medical Science 64, 489-500, 1986.
Witte, M.B., and Barbul, A. General principles of wound healing. Surgical Clinics of North America 77, 509-528, 1997.
Woo, Y.C., Park, S.S., Subieta, A.R., and Brennan, T.J. Changes in tissue pH and temperature after incision indicate acidosis may contribute to postoperative pain. Anesthesiology: The Journal of the American Society of Anesthesiologists 101, 468-475, 2004.
Woodley, D.T. Distinct fibroblasts in the papillary and reticular dermis: implications for wound healing. Dermatologic Clinics 35, 95-100, 2017.
Xiong, M., Elson, G., Legarda, D. and Leibovich, S.J. Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. The American Journal of Pathology 153, 587-598, 1998.
Xue, M., and Jackson, C.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care 4, 119-136, 2015.
Yahagi, K., Kolodgie, F.D., Lutter, C., Mori, H., Romero, M.E., Finn, A.V., and Virmani, R. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology 37, 191-204, 2017.
Yamaguchi, J., Kusano, K.F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., Bosch-Marce, M., Masuda, H., Losordo, D.W., and Isner, J.M. Stromal cell derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107, 1322-1328, 2003.
Yang, H., and Wright, J.R. Human β cells are exceedingly resistant to streptozotocin in vivo. Endocrinology 143, 2491-2495, 2002.
Yar, M., Gigliobianco, G., Shahzadi, L., Dew, L., Siddiqi, S.A., Khan, A.F., Chaudhry, A.A., Rehman, I.u., and MacNeil, S. Production of chitosan PVA PCL hydrogels to bind heparin and induce angiogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials 65, 466-476, 2016.
Yeong, E.K., Mann, R., Goldberg, M., Engrav, L., and Heimbach, D. Improved accuracy of burn wound assessment using laser Doppler. Journal of Trauma and Acute Care Surgery 40, 956-962, 1996.
Younes, N., Albsoul, A., Badran, D., and Obedi, S. Wound bed preparation with 10-percent phenytoin ointment increases the take of split-thickness skin graft in large diabetic ulcers. Dermatol Online Journal 12, 5, 2006.
Yue, D.K., Morris, K., McLennan, S. and Turtle, J.R. Glycosylation of plasma protein and its relation to glycosylated hemoglobin in diabetes. Diabetes 29, 296-300, 1980.
Zhu, Y., Zhang, J., Song, J., Yang, J., Du, Z., Zhao, W., Guo, H., Wen, C., Li, Q., and Sui, X. A Multifunctional pro‐healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Advanced Functional Materials 30, 1905493, 2020.