簡易檢索 / 詳目顯示

研究生: 劉得凰
Liu, Te-Huang
論文名稱: 近岸激浪過程模擬之研究
A Study of Numerical Simulation on Nearshore Breaking Wave Model
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系碩士在職專班
Department of Hydraulic & Ocean Engineering (on the job class)
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 演進型緩坡方程式雷諾平均納維爾-史托克斯方程式激浪
外文關鍵詞: Evolution Equation for Mild-Slope Eqaution, Reynolds Averaged Navier Stokes, breaking wave
相關次數: 點閱:141下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對近岸激浪過程進行探討,文中應用緩坡方程式 (Mild-Slope Eqaution,MSE) 描述近岸海域之波浪變形,同時利用雷諾平均納維爾-史托克斯方程式 (Reynolds Averaged Navier Stokes,RANS) 結合自由液面處理方法對激浪過程之液面進行模擬。本文首先透過演進型緩坡方程式 (Evolution Equation for Mild-Slope Eqaution,EEMSE) 推算近岸水域之波場。再利用 EEMSE 所得之波場作為輸入條件,透過RANS模式,推算模擬波浪碎波及近岸激浪過程。本文數值模擬結果能掌握激浪過程之波形變化,作為兩棲登陸海況研判之重要資訊,以降低兩棲登陸作戰可能發生之不確定性。本文同時針對宜蘭利澤海岸的海域地形及波浪特性進行推算及激浪模擬,計算結果顯示本文結合EEMSE及RANS模式,可以用來模擬近岸激浪過程。

    The purpose of this study is to study wave splashing, running, shoaling and breaking on the slopping bed. An evolution equation for mild-slope equation (EEMSE) model and RANS (Reynolds Averaged Navier-Stokes) model are used to simulate the wave transformations on the sloping bed. The RANS equations are used to calculate the flow field around the structures for various incident wave conditions. The model is employed to simulate the flow kinematics and the turbulence effects in the RANS equations. The significant benefit of the present study over the traditional way of analyzing wave propagation problems is to apply the RANS model and the embedding method by taking account of the fully nonlinear, viscous and turbulent effects on the physical problem. Coupling the Mild-Slope Equation model and RANS model, the wave transformations problem can be easily simulated. We have compared the numerical results with existing experimental data and found a close agreement between computational and measured data. The present investigation describes flow field and turbulence breaking waves on a slopping bed. The predicted wave deformation, mean velocity field, and turbulence distribution under the breaking wave are presented and discussed. The wave model has been tested for the case of wave propagation in the Letzer coastal waters of Yilan.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 緒論1 1-1 研究動機及目的1 1-2 前人研究6 1-3 本文組織11 第二章 緩坡方程式12 2-1 方程式簡介12 2-2 邊界條件13 2-3 數值方法15 2-4 模式驗證17 第三章 RANS方程式21 3-1 RANS方程式簡介21 3-2 邊界條件22 3-2-1上游邊界條件23 3-2-2下游邊界條件24 3-2-3底部邊界條件25 3-2-4自由表面邊界條件25 3-3 數值方法27 3-3-1自由表面處理方法28 3-3-2複雜地形處理方法29 3-4 模式驗證31 第四章 激浪模擬33 4-1 斜坡底床33 4-2 沙洲底床37 4-2 平台底床40 第五章 實例計算43 5-1 利澤海岸地形簡介43 5-2 近岸激浪模擬45 5-3 參數設定49 5-4 激浪模擬結果與討論51 第六章 結論與建議55 6-1 結論55 6-2 建議56 參考文獻57

    1.Battjes, J. A., “Surf similarity, ” Proceedings of 14th International Conference on Coastal Engineering, ” Copenhagen, ASCE, pp. 466-480 (1974).
    2.Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of Thirteenth International Coastal Engineering Conference, Canada, ASCE, pp. 471-490 (1972).
    3.Bradford, S.F, “Numerical simulation of surf zone dynamics,” J. Waterw. Port Coast. Ocean Eng., Vol. 126, pp.1-13 (2000).
    4.Chen, Q., Madsen P.A., Schaffer H. A., and Basco D.R., “Wave-Current Interaction Based on an Enhanced Boussinesq Approach,” Coastal Engineering, Vol. 33, pp. 11-39 (1998).
    5.Chen, Y. and Liu P. L. F., “Modified Boussinesq equations and associated parabolic models for water wave propagation,” Journal of Fluid Mechanics, Vol. 288, pp. 351-381 (1995.).
    6.Chu, C. C. and Chen B. F., “An application of artificial neural networks – tidal prediction and supplement around Taiwan waters,” Proceedings of 22nd Ocean Engineering Conference, Kaohsiung, Taiwan, pp. 89-96 (2000).
    7.Galvin, C. J., “Breaker type classifications of three laboratory beaches, ” Journal of Geophysical Research, Vol. 73, No. 12 (1968).
    8.Hsieh, C. M., Tsai C. Y., Hsu T. W., and Lai J. W., “Coupling VOF/PLIC and embedding method for simulation wave breaking on bar/step-type profile,” paper submitted to Coastal Engineering (2009).
    9.Hsu, T. W. and Wen C. C., “A parabolic equation extended to account for rapidly varying topography,” Ocean Engineering., Vol. 28, pp. 1479-1498 (2001).
    10.Hsu, T. W., Hsieh C. M., and R. Hwang, “Using RANS to simulate vortex generation and dissipation around.submerged breakwaters,” Coastal Engineering, Vol. 51, pp.557-519 (2004).
    11.Isobe, M., “A Parabolic Equation Model for Transformation of Irregular Waves Due to Refraction, Diffraction and Breaking,” Coastal Eng. in Japan, Vol. 30, pp. 33-47 (1987).
    12.Isobe, M., Nishimura H., and Horikawa K., “ Expressions of perturbation solutions for conservative waves by using wave height,” Proc. 33th Annu. Conf. of JSCE, Vol. II, pp. 760-761 (1978). (In Japanese)
    13.Johnson, D. B., Raad P. E., and Chen S., “Simulation of Impacts of Fluid Free Surface with Solid Boundary,” Int J. Numer. Meth. Fluids, Vol. 19, pp. 153-174 (1994).
    14.Kawamura, T., “Numerical Simulation of 3-D Turbulent Free-Surface Flow,” Int. Research Center for Comp. Hydrodynamics (ICCH), Demark (1998).
    15.Lai, M.C and Peskin C. S., “An immersed boundary method with formal second-order accuracy and reduced numerical viscosity.” Journal of computational physics, Vol. 160 (2), pp.705-719 (2000).
    16.Launder, B.E., Numerical model for simulating storm induced beach changes. U.S. Army Corps of Engineers, CERC-89-9 (1989).
    17.Lin, P. and Liu P. L. F., “A Numerical Study of Breaking Waves in the Surf Zone,” Journal of Fluid Mechanics, Vol. 359, pp. 239-264 (1998a).
    18.Lin, P. and Liu P. L. F., “Turbulence Transport, Vorticity Dynamics Solute Mixing Under Plunging Breaking Waves in Surf Zone,” Journal of Geophysical Research, Vol. 103, pp. 15677-15694 (1998b).
    19.Lin, P., and Liu P. L. F., “ A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics, Vol. 350, pp. 239-264 (1998).
    20.Madsen, P. A., Murray R., and Sorensen O. R., “A New Form of the Boussinesq Equations with Improved Linear Dispersion Characteristics,” Coastal Engineering, Vol. 15, pp. 371-388 (1991).
    21.Madsen, P. A., Sorensen O.R., and Schaffer H. A., “Surf Zone Dynamics Simulated by a Boussinesq-type Model. Part II. Surf Beat and Swash Oscillation for Wave Groups and Irregular Waves,” Coastal Engineering, Vol. 32, pp. 189-319 (1997).
    22.McCulloch, W. S. and Pitts W., “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–133 (1943).
    23.Miyata, H., Kanai A., Kawamura T., and Park J. C., “Numerical Simulation of 3-D Breaking Waves,” J. Mar. Sci. Technol., Vol. 1, pp.183-197 (1996).
    24.Nwogu, O., “An Alternative form of the Boussinesq Equations for Nearshore Wave Propagation,” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 119, No. 6, pp. 618-638 (1993).
    25.Peregrine, D. H., “Long Waves on a Beach,” Journal of Fluid Mechanics, Vol. 27, pp. 815-882 (1967).
    26.Peskin C.S and Printz B. F., “Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries.” Journal of Computational Physics, Vol. 105 (1), pp 33-46 (1993).
    27.Pruszak Z., Szmytkiewicz P., Ostrowski R., Skaja M., and Szmytkiewicz M., “ Shallow-water wave energy in a multi-bar coastal zone. Proceedings of 2008 Joint Chinese- Polish Conference on Coastal Engineering, pp. 43-58 (2008).
    28.Radder, A. C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
    29.Ravoux, J. F., Nadim A., and Haj-Hariri H., “ An embedding method for bluff body flows: interactions of two side-by-side cylinder wakes,” Theoretical and Computational Fluid Dynamics, Vol. 16 (6), pp. 433-466 (2003).
    30.Rodi, W., Turbulent models and their applications in hydraulics-a state of the art review. International Association for Hydraulic Research, Delft, The Netherlands (1980).
    31.Tang, C. J., Patel V. C., and Landweber L., “Viscous Effects on Propagation and Reflection of Solitary Waves in Shallow Channels,” Journal of Computational Physics, Vol. 88, No. 1, pp. 86-113 (1990).
    32.Ting, F. C. K. and Kirby J. T., “ Observation of undertow and turbulence in a laboratory surf zone,” Coast. Eng., Vol. 24, pp. 51-80 (1994).
    33.Tsai, C. P. and Lee T. L., “Back-Propagation neural network in tidal-level forecasting,” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 125 (4), pp. 188-195 (1999).
    34.Wang, Y. and Hsu C., “Computation of Wave Breaking on Sloping Beach by VOF Method,” Proc. 3nd Int. Offshore and Polar Engrg. Conf. III, pp. 96-101 (1993).
    35.Zanke, U. C. E., Hydromeckanik der Gerinne und Kustengewasser, Parey Buchverlag, Berlin (2002).
    36.Zhao, Q., Armfield S., and Tanimoto, K., “ Numerical simulation of breaking waves by a multi-scale turbulence model,” Coast. Eng., Vol. 51, pp.53-80 (2004).
    37.溫志中,「修正緩坡方程式之研發與應用」,成功大學水利及海洋工程學系博士論文 (2001)。
    38.謝文斌,「由緩坡方程式求解不規則波浪變形之研究」,成功大學水利及海洋工程學系碩士論文 (2003)。
    39.謝志敏,「應用 RANS 模擬波浪通過潛堤和沙漣流場」,成功大學水利及海洋工程學系博士論文 (2004)。
    40.蔡金晏,「近岸碎波與波浪布拉格共振之流場數值模擬研究」,成功大學水利及海洋工程學系博士論文 (2009)。

    下載圖示 校內:2012-02-09公開
    校外:2012-02-09公開
    QR CODE