| 研究生: |
湯宗鎮 Tang, Zong-Jhen |
|---|---|
| 論文名稱: |
利用半導體雷射光注入所產生之非鎖住動態進行光雙單調製邊帶轉換及微波放大 Optical DSB to SSB Conversion and Microwave Amplification Using Unlocking Dynamics by Optical Injection of Semiconductor Lasers |
| 指導教授: |
黃勝廣
Hwang, Sheng-Kwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 半導體雷射 、非線性動態 、光雙單調制邊帶轉換 、微波放大 |
| 外文關鍵詞: | semiconductor laser, nonlinear dynamics, DSB-to-SSB conversion, microwave amplification |
| 相關次數: | 點閱:144 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要研究光注入系統所產生的眾多非線性動態,其中的非鎖住動態,擁有因主雷射注入會使得副雷射頻移並產生強度不對稱的邊帶的特性,利用此特性做光雙單調制邊帶轉換,能用將轉換前SRR = 0 dB的光雙調制邊帶訊號,轉換成SRR有20 dB的光單調制邊帶訊號,可望能改善radio over fiber (RoF)系統傳遞光訊號時,由於調制光訊號產生兩強度相等之調制邊帶所造成的能量消逝效應。且轉換時利用主雷射的調制邊帶注入鎖定頻移後的副雷射,可以改善原先非鎖住動態頻率不穩的特性,並不會受到影響。此外可以透過調整操作條件控制非鎖住動態的再生主雷射與頻移的副雷射間的相對強度,使得轉換後的微波訊號強度有不同程度的放大,可達到20 dB以上的增益。且此系統對於欲轉換之光雙調制邊帶,其微波訊號頻率不穩定時,亦能在一定的範圍內對應,使其能成功的達成光雙單調制邊帶的轉換。
For radio-over-fiber (RoF) systems, direct and external modulation approaches typically generate optical double-sideband (DSB) modulation signals. Owing to chromatic dispersion in optical fibers, DSB signals lead to significant microwave power fading effect. To mitigate the microwave power fading effect, optical single-sideband (SSB) modulation signals are preferred. This study investigates an optically injected semiconductor laser operating at unlocking dynamics for DSB-to-SSB conversion. Compared with the optical DSB signals, such converted optical SSB signals exhibit greatly enhanced optical modulation depth, which indicates highly improved microwave power after photodetection. Therefore, the proposed system not only mitigates the microwave power fading effect but also enables microwave power amplification simultaneously.
[1] C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28, pp. 390–405, 2010.
[2] C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1375–1383, 1997.
[3] M. Zhu, L. Zhang, S. H. Fan, C. Su, G. Gu, and G. K. Chang, “Efficient delivery of integrated wired and wireless services in UDWDM-RoF-PON coherent access network,” IEEE Photon. Technol. Lett., vol.24, no. 13, pp. 1127–1129, 2012.
[4] C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron., vol. 48, no. 4, pp. 490–499, 2012.
[5] C. Lim, A. Nirmalathas, and D. Novak, “Techniques for multichannel data transmission using a multisection laser in millimeter-wave fiber-radio systems,” IEEE Trans. Microwave Theory Tech., vol. 40, no. 7, pp. 1351–1357, 1999.
[6] A. Loayssa, D. Benito, and M. J. Garde, "Applications of optical carrier Brillouin processing to microwave photonics," Optical Fiber Technology, vol. 8, no. 1, pp. 24-42, 2002.
[7] W. Zhang and R. A. Minasian, "Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering," IEEE Photonics Technology Letters, vol. 23, no. 23, pp. 1775-1777, 2011.
[8] S.-H. Lee, H.-J. Kim, and J.-I. Song, "Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems," Optics express, vol. 22, no. 1, pp. 183-192, 2014..
[9] S.-H. Lee and J.-I. Song, "An XPolM-based all-optical SSB frequency up-conversion technique in an SOA," IEEE Photonics Technology Letters, vol. 29, no. 7, pp. 627-630, 2017.
[10] G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE transactions on microwave theory and techniques, vol. 45, no. 8, pp. 1410-1415, 1997.
[11] P. S. Devgan, D. P. Brown, and R. L. Nelson, "RF performance of single sideband modulation versus dual sideband modulation in a photonic link," Journal of Lightwave Technology, vol. 33, no. 9, pp. 1888-1895, 2015.
[12] M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links, ” Electron. Lett., vol. 30, no. 25, pp. 2157-2158, 1994.
[13] D. S. Glassner, M. Y. Frankel, and R. D. Esman, “Reduced loss microwave fiber optic links by intracavity modulation and carrier suppression,” IEEE Microwave Guided Wave Lett., vol. 7, no. 3, pp. 57–59, 1997.
[14] R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction, ” IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 218-220, 1995.
[15] Y.-H. Hung and S.-K. Hwang, "Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers," Optics letters, vol. 38, no. 17, pp. 3355-3358, 2013.
[16] Y.-H. Hung, C.-H. Chu, and S.-K. Hwang, "Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links," Optics letters, vol. 38, no. 9, pp. 1482-1484, 2013.
[17] J.-M. Liu and L. S. Tsimring, Digital communications using chaos and nonlinear
dynamics. Springer Science & Business Media, 2006.
[18] B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt., vol. 9,
[19] T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun., vol. 215, no. 1-3, pp.135–151, 2003.
[20] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun., vol. 183, no. 1-4, pp. 195–205, 2000.
[21] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron., vol. 16, no. 3, pp. 347–355, 1980.
[22] G. H. M. Tartwijk, D. Lensto, “Semiconductor laser with optical injection and feedback”, QuantumSemi class. Opt., vol. 7, pp. 87-143, 1995.
[23] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron., vol. 39, no. 4, pp. 562– 568, 2003.
[24] G. Q. Xia, S. C. Chan, and J. M. Liu, “Multistability in a semiconductor laser with optoelectronic feedback,” Opt.Express., vol. 15, no. 2, pp. 572–576, 2007.
[25] T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 10, pp. 1322–1324, 1997.
[26] S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett., Vol. 16, 972–974, 2004.
[27] S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron., vol. 41, no. 9, pp. 1142–1147, 2005.
[28] J. M. Liu, H. F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates." IEEE J. Quantum Electron., vol. 38, pp. 1184-1196, 2002.
[29] J.-M. Liu and T. Simpson, "Four-wave mixing and optical modulation in a semiconductor laser," IEEE journal of quantum electronics, vol. 30, no. 4, pp. 957-965, 1994.
[30] K. Williams and R. Esman, "Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency," Electronics Letters, vol. 30, no. 23, pp. 1965-1966, 1994.
[31] S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, "Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links," Electronics Letters, vol. 36, no. 11, pp. 944-946, 2000.
[32] C.-C. Tseng and S.-L. Lee, "Secure single-side-band signal generation using two fractional Hilbert transformers," in 2015 IEEE International Conference on Consumer Electronics-Taiwan, 2015: IEEE, pp. 452-453.
校內:2024-07-26公開