簡易檢索 / 詳目顯示

研究生: 陳冠元
Chen, Guan-yuan
論文名稱: 利用定量蛋白質體分析雌激素貝他受體在懷孕晚期的大鼠子宮中所扮演的角色
Quantitative proteomics reveals the role of ERbeta in late pregnant rat uteri
指導教授: 蔡美玲
Tsai, Mei-ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 90
中文關鍵詞: 定量蛋白質體雌激素貝他受體懷孕子宮重朔子宮收縮
外文關鍵詞: Pregnancy, Quantitative proteomics, ERbeta, Uerine quiescence, Uterine remodeling
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 子宮重朔的發生是為了適應懷孕過程中胚胎的持續發育。在懷孕的末期,子宮腔室的變大則是與子宮壁變薄和子宮活動力下降有關。同時,雌激素在懷孕末期也達到最大濃度。此外,兩種雌激素受體(ERα 與ERβ)的表現也與懷孕有關。因此,本篇研究之目的在於探討雌激素受體貝它(ERβ)在懷孕子宮裡所扮演的角色。
    我們第一個目標是建立透過次細胞分離懷孕第十八天(G18)大鼠子宮的蛋白質體分析資料庫,而這份蛋白清單讓我們能夠假設子宮重朔是由於細胞骨架,胞外基質與PKA-mediated的途徑相關的蛋白發生變化而成型。西方墨點法的結果顯示相較於懷孕第7天SMMHC, α actin, β actin, nucleolin, α2-macroglobulin, 和 Bcl-xL是在懷孕第18天的子宮有較高的表現量,然而fibronectin, collagen VI, TH, PKAIIRα 和prohibitin 則是在第18天子宮的表現量較低,另外integrinβ1, VDAC-1, Ras, 和 Src均無差異在第7與第18天的子宮。我們更進一步分析cAMP對子宮收縮的影響。這些結果推論出懷孕末期的子宮具有細胞肥大,胞外基質崩解伴隨的子宮壁變薄和氧化自由基造成的細胞凋亡。而在懷孕末期子宮的交感神經阻斷可能會造成子宮對cAMP的敏感度增加並且有助於子宮靜默。
    第二個目標則是量化出ERβ 活化劑genistein能夠調控出的蛋白。ERβ具有較高的表現在G18,指出懷孕末期雌激素的作用大多被ERβ所操控著。利用定量蛋白質體定出159個蛋白。根據這份清單,我們假設genistein可以透過破壞蛋白酶和蛋白酶抑制劑的平衡來達到子宮重朔。這種失去平衡可能導致胞外基質以及細胞骨架蛋白的分解。西方墨點法的結果顯示 10-9M genistein 使得α2-macroglobulin, collagen VI, fibronectin, Bcl-xL, α actin 和 α tubulin 下降。Genistein甚至抑制了細胞存活與子宮收縮。而西方墨點法和功能性分析結果也都支持我們的假說。
    總結來說,雖然ERβ高度表現在懷孕的子宮中,但是其功能仍有大部分尚未釐清。本研究提供了ERβ可能扮演的重要角色,尤其是在懷孕子宮外觀與功能的重朔,而這是透過改變蛋白酶和蛋白酶抑制劑的平衡。我們也發現ERβ的新角色可以當作避免早產的治療。

    To accommodate the growing embryo, uterine remodeling occurs. During late-gestation, uterine enlargement is associated with wall thinning and uterine quiescence in late pregnancy. Correspondingly, the estrogen level continuously rises to the maximal level in late-gestation. Since the expression of two estrogen receptors (ERα and ERβ) is gestation-dependent, the purpose of this study was to explore the possible role of ERβ in pregnant uteri.
    Our first objective was to establish a database of uterine proteome by subcellular fractionation coupled proteomic analysis of rat uteri on gestation day 18 (G18). The list of uterine proteins from late-gestation uteri allowed us to hypothesize that alteration in the abundance of proteins related to cytokskeleton, extracellular matrix (ECM), and PKA-mediated pathways contributed to uterine remodeling. Western blotting analysis showed that expression of SMMHC, α actin, β actin, nucleolin, α2-macroglobulin, and Bcl-xL were higher in G18 uteri than in G7. The expression of fibronectin, collagen VI, TH, PKAIIRα and prohibitin was lower in G18 uteri than in G7. The expression of integrinβ1, VDAC-1, Ras, and Src was indifferent between G18 and G7 uteri. Contraction analysis was to further examine the influence of cAMP on uterine contractions. These data suggested the presence of cellular hypertrophy and wall thinning with ECM degradation and ROS-induced apoptosis. Sympathetic denervation in late pregnant uteri may increase the sensitivity of late-gestation uteri to cAMP, which contributes to uterine quiescence.
    The second objective was to quantify the proteins modulated by genistein, an ER activator. Higher expression of ERβ in G18 than in G7 suggests that the estrogenic action in the late pregnancy was mainly determined by ERβ. Repeated quantitative proteomic approaches had identified 159 proteins in 14 bands. The list of the proteins modulated by genistein allowed us to hypothesize that genistein caused uterine remodeling by disturbing the balance between proteases and protease inhibitors. The imbalance may contribute to the reduction of ECM and cytoskeletal proteins. Western blotting showed the reduction of protease inhibitors, such as 2-macroglobulin. Correspondingly, the expression of collagen VI, fibronectin, Bcl-xL, α actin and α tubulin were decreased by genistein at 10-9M. Even cell survival and uterine contraction were suppressed by genistein. Both Western blotting and functional assays supported our hypothesis.
    In conclusion, although ERβ is highly expressed in pregnant uteri, its role in pregnant uteri is largely unknown. This study provides an insight that ERβ plays an important role in morphological and functional remodeling of pregnant uteri by shifting the balance between proteases and protease inhibitors. The novel role of ER may serve as an alternative remedy for preterm labor.

    Acknowledgement……………………………………………………………..………1 Content………………………………………………………………………..……….3 Abstract………………………………………………………………………..………6 中文摘要……………………………………………………..7 Part A.Introduction……………………………………………………………….…....8 I. Uterine remodeling during pregnancy………………………………………….….. 8 1. Establishment of pregnancy 2. Morphological remodeling in uteri during pregnancy 3. Functional remodeling in uteri during pregnancy 4. Shift of ovarian hormones during pregnancy II. Estrogenic actions on uterine functions…………………………………………...10 1. Effect of estrogen on uterine growth 2. Effect of estrogen on myometrial contraction 3. Effect of estrogen on the production of reactive oxidative species III. Action mechanism of estrogen……………………………………………….. …11 1. Non-genomic effect of estrogen through an ER-dependent pathway 2. Non-genomic effect of estrogen through an ER-independent pathway 3. Genomic effect of estrogen through an ERE-dependent pathway 4. Genomic effect of estrogen through an ERE-independent pathway IV. Characterization of two estrogen receptors………………………………………14 1. Structural differences between ERα and ERβ 2. Functional diversity between ERα and ERβ 3. Biochemical differences between ERα and ERβ 4. Different distribution between ERα and ERβ V. Current studies on estrogen receptors in uterus…………………………………...17 1. The influence of deleted Estrogen receptors on uterine functions 2. Expression of ERs during pregnancy VI. Quantitative proteomics………………………………………………………….17 1. Advantage of Proteomic analysis in biological studies 2. A large-scale analysis of organ proteins VII. The purpose of this study………………………………………………………..19 Part B. Materials and methods……………………………………………………….20 1. Animals 2. Preparation of uterine tissue homogenate 3. In-gel protein digestion 4. Solution digestion 5. Dimethyl Labeling 6. Mass spectrometry and protein identification 7. Quantitative analysis of dimethyl labeled peptides 8. Western blot analysis 9. Primary culture of uterine myocytes 10. MTT assay 11. MDA assay 12. Explant culture 13. Transfection of plasmid carried ERβ gene 14. Contraction measurement 15. Identification of ERE-like sequence by Transcription Element Search System 16. Data analysis and statistical evaluation Part C. Results………………………………………………………………………..27 I: Characterization of uterine proteins from pregnant rats…………………………...27 1. Analysis of ROS production in pregnant uteri………………………...……..27 2. Subcellular fractionation coupled with proteomic analysis………………….27 3. Hypothesis …………………………………………………………….……..28 4. Hypothesis-testing and protein validation……………………………………28 a. Involvement of cytoskeletal proteins in uterine hypertrophy b. Involvement of extracellular matric (ECM) proteins in uterine enlargement c. Involvement of mitochondrial proteins in cell loss d. Involvement of sympathetic denervation in cAMP-mediated relaxation II: Role of activated ERβ in morphological remodeling of late-gestation uteri……..31 1. Expression of ERs in pregnant uteri…………………………………………31 2. Identification of genistein-modulated proteins by GeLC/MS/MS…………..31 3. Quantitative analysis of genistein-modulated proteins by stable diemthyl labeling coupled with GeLC MS/MS………………………………………………..31 4. Hypothesis …………………………………………………………………..32 5. Hypothesis-testing and protein validation …………………………………...33 a. Effect of genistein on proteins related to cell survival b. Effect of genistein on cytoskeletal proteins and uterine contraction c. Effect of genistein on ECM-related proteins d. Effect of genistein on protease inhibitors e. Effect of genistein on antioxidant proteins Part D. Discussion……………………………………………………………………37 1. Major finding of this study………………………………………………..….37 2. Physiological Significance of ERβ on ECM, cytoskeleton and protease…….38 3. Physiological Significance of ERβ on cell survival………………………….40 4. Physiological Significance of ERβ on uterine relaxation…………………….41 5. Conclusion: putative role of ERβ in pregnant uteri…………………………..42 E. Reference……...…………………………………………………………………..44 Tables…………………………………………54 Figures………………………………………………………………………..………63 Curriculum Vitae……………………………………………………………………..90

    1. Johnson, E. A. (1988) The competitive market: changing medical staff accountability. Hosp Health Serv Adm 33, 179-187.
    2. Lopata, A. (1996) Blastocyst-endometrial interaction: an appraisal of some old and new ideas. Mol Hum Reprod 2, 519-525.
    3. Johnson, M., and Everitt, B. (2000) Essential reproduction, 5th Ed., Blackwell Science, Malden, MA.
    4. Shynlova, O., Oldenhof, A., Dorogin, A., Xu, Q., Mu, J., Nashman, N., and Lye, S. J. (2006) Myometrial apoptosis: activation of the caspase cascade in the pregnant rat myometrium at midgestation. Biol Reprod 74, 839-849.
    5. Shynlova, O., Mitchell, J. A., Tsampalieros, A., Langille, B. L., and Lye, S. J. (2004) Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium. Biol Reprod 70, 986-992.
    6. Nishinaka, K., and Fukuda, Y. (1991) Changes in extracellular matrix materials in the uterine myometrium of rats during pregnancy and postparturition. Acta Pathol Jpn 41, 122-132.
    7. Trujillo, M., Candenas, L., Cintado, C. G., Magraner, J., Fernandez, J., Martin, J. D., and Pinto, F. M. (2001) Hormonal regulation of the contractile response induced by okadaic acid in the rat uterus. J Pharmacol Exp Ther 296, 841-848.
    8. Horowitz, A., Clement-Chomienne, O., Walsh, M. P., and Morgan, K. G. (1996) Epsilon-isoenzyme of protein kinase C induces a Ca(2+)-independent contraction in vascular smooth muscle. Am J Physiol 271, C589-594.
    9. Mathieu, C. L., Burnett, S. H., Mills, S. E., Overpeck, J. G., Bruns, D. E., and Bruns, M. E. (1989) Gestational changes in calbindin-D9k in rat uterus, yolk sac, and placenta: implications for maternal-fetal calcium transport and uterine muscle function. Proc Natl Acad Sci U S A 86, 3433-3437.
    10. Lee, G. S., and Jeung, E. B. (2007) Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model. Am J Physiol Endocrinol Metab 293, E132-138.
    11. Malcolm, I. C., Wu, Y. Z., and Higinbotham, J. (2003) The simulation of 31P NMR line shapes of lipid bilayers using an analytically soluble model. Solid State Nucl Magn Reson 24, 1-22.
    12. Soding, J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951-960.
    13. Inano, H., Suzuki, K., Ishii-Ohba, H., Ikeda, K., and Wakabayashi, K. (1991) Pregnancy-dependent initiation in tumorigenesis of Wistar rat mammary glands by 60Co-irradiation. Carcinogenesis 12, 1085-1090.
    14. Fertuck, K. C., Eckel, J. E., Gennings, C., and Zacharewski, T. R. (2003) Identification of temporal patterns of gene expression in the uteri of immature, ovariectomized mice following exposure to ethynylestradiol. Physiol Genomics 15, 127-141.
    15. Hewitt, S. C., Deroo, B. J., Hansen, K., Collins, J., Grissom, S., Afshari, C. A., and Korach, K. S. (2003) Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Mol Endocrinol 17, 2070-2083.
    16. Groothuis, P. G., Dassen, H. H., Romano, A., and Punyadeera, C. (2007) Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and human. Hum Reprod Update 13, 405-417.
    17. Yamamoto, T. (1995) Effects of estrogens on Ca channels in myometrial cells isolated from pregnant rats. Am J Physiol 268, C64-69.
    18. Okabe, K., Inoue, Y., and Soeda, H. (1999) Estradiol inhibits Ca2+ and K+ channels in smooth muscle cells from pregnant rat myometrium. Eur J Pharmacol 376, 101-108.
    19. Vedernikov, Y. P., Hartke, J. R., de Long, M. A., Saade, G. R., and Garfield, R. E. (2003) Sex hormone effects in non-pregnant rat and human myometrium. Eur J Obstet Gynecol Reprod Biol 108, 59-66.
    20. Choi, J., Park, J. H., Kwon, O. Y., Kim, S., Chung, J. H., Lim, D. S., Kim, K. S., Rhim, H., and Han, Y. S. (2005) T-type calcium channel trigger p21ras signaling pathway to ERK in Cav3.1-expressed HEK293 cells. Brain Res 1054, 22-29.
    21. Tsai, M. L., Chang, C. C., Lee, C. L., and Huang, B. Y. (2003) The differential effects of tamoxifen and ICI 182,780 on the reduction of Na+/K+ ATPase activity and spontaneous oscillations by 17beta-estradiol. Chin J Physiol 46, 55-62.
    22. Picherit, C., Dalle, M., Neliat, G., Lebecque, P., Davicco, M. J., Barlet, J. P., and Coxam, V. (2000) Genistein and daidzein modulate in vitro rat uterine contractile activity. J Steroid Biochem Mol Biol 75, 201-208.
    23. Behl, C., and Moosmann, B. (2002) Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383, 521-536.
    24. Yu, L., Liu, H., Li, W., Zhang, F., Luckie, C., van Breemen, R. B., Thatcher, G. R., and Bolton, J. L. (2004) Oxidation of raloxifene to quinoids: potential toxic pathways via a diquinone methide and o-quinones. Chem Res Toxicol 17, 879-888.
    25. Urata, Y., Ihara, Y., Murata, H., Goto, S., Koji, T., Yodoi, J., Inoue, S., and Kondo, T. (2006) 17Beta-estradiol protects against oxidative stress-induced cell death through the glutathione/glutaredoxin-dependent redox regulation of Akt in myocardiac H9c2 cells. J Biol Chem 281, 13092-13102.
    26. De, M., and Wood, G. W. (1990) Influence of oestrogen and progesterone on macrophage distribution in the mouse uterus. J Endocrinol 126, 417-424.
    27. Lorenzo, J. (2003) A new hypothesis for how sex steroid hormones regulate bone mass. J Clin Invest 111, 1641-1643.
    28. Collins, P., and Webb, C. (1999) Estrogen hits the surface. Nat Med 5, 1130-1131.
    29. Garcia-Cardena, G., and Folkman, J. (1998) Is there a role for nitric oxide in tumor angiogenesis? J Natl Cancer Inst 90, 560-561.
    30. Chen, H. I., Cheng, S. Y., and Jen, C. J. (1999) Chronic exercise enhances vascular responses to clonidine in rats by increasing endothelial alpha2-adrenergic receptor affinity. Chin J Physiol 42, 61-66.
    31. Singer, C. A., Figueroa-Masot, X. A., Batchelor, R. H., and Dorsa, D. M. (1999) The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J Neurosci 19, 2455-2463.
    32. Collins, P., Rosano, G. M., Sarrel, P. M., Ulrich, L., Adamopoulos, S., Beale, C. M., McNeill, J. G., and Poole-Wilson, P. A. (1995) 17 beta-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation 92, 24-30.
    33. Endoh, H., Sasaki, H., Maruyama, K., Takeyama, K., Waga, I., Shimizu, T., Kato, S., and Kawashima, H. (1997) Rapid activation of MAP kinase by estrogen in the bone cell line. Biochem Biophys Res Commun 235, 99-102.
    34. Filardo, E. J., Quinn, J. A., Bland, K. I., and Frackelton, A. R., Jr. (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14, 1649-1660.
    35. Filardo, E. J., Quinn, J. A., Frackelton, A. R., Jr., and Bland, K. I. (2002) Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 16, 70-84.
    36. Cato, A. C., Nestl, A., and Mink, S. (2002) Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE 2002, RE9.
    37. Razandi, M., Pedram, A., Greene, G. L., and Levin, E. R. (1999) Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells. Mol Endocrinol 13, 307-319.
    38. Bain, D. L., Heneghan, A. F., Connaghan-Jones, K. D., and Miura, M. T. (2007) Nuclear receptor structure: implications for function. Annu Rev Physiol 69, 201-220.
    39. Klein-Hitpass, L., Schorpp, M., Wagner, U., and Ryffel, G. U. (1986) An estrogen-responsive element derived from the 5' flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 46, 1053-1061.
    40. Klein-Hitpass, L., Ryffel, G. U., Heitlinger, E., and Cato, A. C. (1988) A 13 bp palindrome is a functional estrogen responsive element and interacts specifically with estrogen receptor. Nucleic Acids Res 16, 647-663.
    41. Hyder, S. M., Chiappetta, C., and Stancel, G. M. (1999) Interaction of human estrogen receptors alpha and beta with the same naturally occurring estrogen response elements. Biochem Pharmacol 57, 597-601.
    42. Hyder, S. M., Stancel, G. M., Nawaz, Z., McDonnell, D. P., and Loose-Mitchell, D. S. (1992) Identification of an estrogen response element in the 3'-flanking region of the murine c-fos protooncogene. J Biol Chem 267, 18047-18054.
    43. Burbach, J. P., Lopes da Silva, S., Cox, J. J., Adan, R. A., Cooney, A. J., Tsai, M. J., and Tsai, S. Y. (1994) Repression of estrogen-dependent stimulation of the oxytocin gene by chicken ovalbumin upstream promoter transcription factor I. J Biol Chem 269, 15046-15053.
    44. Wijnholds, J., Philipsen, J. N., and Ab, G. (1988) Tissue-specific and steroid-dependent interaction of transcription factors with the oestrogen-inducible apoVLDL II promoter in vivo. EMBO J 7, 2757-2763.
    45. Gaub, J., Poulsen, A. G., Pedersen, C., Tinning, S., Hojgaard, K., Thomson, M. H., Faber, V., and Nielsen, J. O. (1988) Efficacy and safety of two different dose levels of ganciclovir for the treatment of cytomegalovirus chorioretinitis in AIDS patients. Scand J Infect Dis 20, 479-482.
    46. Perillo, B., Sasso, A., Abbondanza, C., and Palumbo, G. (2000) 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol Cell Biol 20, 2890-2901.
    47. Van Dijck, P., De Vos, P., Winderickx, J., and Verhoeven, G. (1993) Multiple binding sites for nuclear factors in the 5'-upstream region of two alpha 2u-globulin genes: implications for hormone-regulated and tissue-specific control. J Steroid Biochem Mol Biol 45, 353-366.
    48. Van Dijck, P., and Verhoeven, G. (1992) Interaction of estrogen receptor complexes with the promoter region of genes that are negatively regulated by estrogens: the alpha 2u-globulins. Biochem Biophys Res Commun 182, 174-181.
    49. Kraus, W. L., Montano, M. M., and Katzenellenbogen, B. S. (1994) Identification of multiple, widely spaced estrogen-responsive regions in the rat progesterone receptor gene. Mol Endocrinol 8, 952-969.
    50. Montano, M. M., Jaiswal, A. K., and Katzenellenbogen, B. S. (1998) Transcriptional regulation of the human quinone reductase gene by antiestrogen-liganded estrogen receptor-alpha and estrogen receptor-beta. J Biol Chem 273, 25443-25449.
    51. Mueller, M. D., Vigne, J. L., Minchenko, A., Lebovic, D. I., Leitman, D. C., and Taylor, R. N. (2000) Regulation of vascular endothelial growth factor (VEGF) gene transcription by estrogen receptors alpha and beta. Proc Natl Acad Sci U S A 97, 10972-10977.
    52. Wu-Peng, X. S., Pugliese, T. E., Dickerman, H. W., and Pentecost, B. T. (1992) Delineation of sites mediating estrogen regulation of the rat creatine kinase B gene. Mol Endocrinol 6, 231-240.
    53. Shapiro, R. A., Xu, C., and Dorsa, D. M. (2000) Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta. Endocrinology 141, 4056-4064.
    54. Slater, E. P., Redeuihl, G., Theis, K., Suske, G., and Beato, M. (1990) The uteroglobin promoter contains a noncanonical estrogen responsive element. Mol Endocrinol 4, 604-610.
    55. Conneely, O. M. (2001) Perspective: female steroid hormone action. Endocrinology 142, 2194-2199.
    56. Hermanson, O., Glass, C. K., and Rosenfeld, M. G. (2002) Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol Metab 13, 55-60.
    57. Weihua, Z., Andersson, S., Cheng, G., Simpson, E. R., Warner, M., and Gustafsson, J. A. (2003) Update on estrogen signaling. FEBS Lett 546, 17-24.
    58. Green, S., Kumar, V., Krust, A., Walter, P., and Chambon, P. (1986) Structural and functional domains of the estrogen receptor. Cold Spring Harb Symp Quant Biol 51 Pt 2, 751-758.
    59. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. A. (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93, 5925-5930.
    60. Tamir, S., Izrael, S., and Vaya, J. (2002) The effect of oxidative stress on ERalpha and ERbeta expression. J Steroid Biochem Mol Biol 81, 327-332.
    61. Montano, M. M., Deng, H., Liu, M., Sun, X., and Singal, R. (2004) Transcriptional regulation by the estrogen receptor of antioxidative stress enzymes and its functional implications. Oncogene 23, 2442-2453.
    62. Duong, V., Licznar, A., Margueron, R., Boulle, N., Busson, M., Lacroix, M., Katzenellenbogen, B. S., Cavailles, V., and Lazennec, G. (2006) ERalpha and ERbeta expression and transcriptional activity are differentially regulated by HDAC inhibitors. Oncogene 25, 1799-1806.
    63. Larson, E. B., and Carroll, M. E. (2007) Estrogen receptor beta, but not alpha, mediates estrogen's effect on cocaine-induced reinstatement of extinguished cocaine-seeking behavior in ovariectomized female rats. Neuropsychopharmacology 32, 1334-1345.
    64. Surmacz, E., and Bartucci, M. (2004) Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer. J Exp Clin Cancer Res 23, 385-394.
    65. Helguero, L. A., Faulds, M. H., Gustafsson, J. A., and Haldosen, L. A. (2005) Estrogen receptors alfa (ERalpha) and beta (ERbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24, 6605-6616.
    66. Huang, C. D., Ammit, A. J., Tliba, O., Kuo, H. P., Penn, R. B., Panettieri, R. A., Jr., and Amrani, Y. (2005) G-protein-coupled receptor agonists differentially regulate basal or tumor necrosis factor-alpha-stimulated activation of interleukin-6 and RANTES in human airway smooth muscle cells. J Biomed Sci 12, 763-776.
    67. Lee, G. S., Choi, K. C., Kim, H. J., and Jeung, E. B. (2004) Effect of genistein as a selective estrogen receptor beta agonist on the expression of Calbindin-D9k in the uterus of immature rats. Toxicol Sci 82, 451-457.
    68. Koehler, K. F., Helguero, L. A., Haldosen, L. A., Warner, M., and Gustafsson, J. A. (2005) Reflections on the discovery and significance of estrogen receptor beta. Endocr Rev 26, 465-478.
    69. Kuiper, G. G., and Gustafsson, J. A. (1997) The novel estrogen receptor-beta subtype: potential role in the cell- and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett 410, 87-90.
    70. Walker, V. R., and Korach, K. S. (2004) Estrogen receptor knockout mice as a model for endocrine research. ILAR J 45, 455-461.
    71. O'Brien, J. E., Peterson, T. J., Tong, M. H., Lee, E. J., Pfaff, L. E., Hewitt, S. C., Korach, K. S., Weiss, J., and Jameson, J. L. (2006) Estrogen-induced proliferation of uterine epithelial cells is independent of estrogen receptor alpha binding to classical estrogen response elements. J Biol Chem 281, 26683-26692.
    72. Weihua, Z., Saji, S., Makinen, S., Cheng, G., Jensen, E. V., Warner, M., and Gustafsson, J. A. (2000) Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proc Natl Acad Sci U S A 97, 5936-5941.
    73. Krege, J. H., Hodgin, J. B., Couse, J. F., Enmark, E., Warner, M., Mahler, J. F., Sar, M., Korach, K. S., Gustafsson, J. A., and Smithies, O. (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A 95, 15677-15682.
    74. Wu, W. X., Ma, X. H., Smith, G. C., Koenen, S. V., and Nathanielsz, P. W. (2000) A new concept of the significance of regional distribution of prostaglandin H synthase 2 throughout the uterus during late pregnancy: investigations in a baboon model. Am J Obstet Gynecol 183, 1287-1295.
    75. Hirsch, J., Hansen, K. C., Burlingame, A. L., and Matthay, M. A. (2004) Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 287, L1-23.
    76. Courtney, J. M., Dunbar, K. E., McDowell, A., Moore, J. E., Warke, T. J., Stevenson, M., and Elborn, J. S. (2004) Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 3, 93-98.
    77. Diederichs, S., Bulk, E., Steffen, B., Ji, P., Tickenbrock, L., Lang, K., Zanker, K. S., Metzger, R., Schneider, P. M., Gerke, V., Thomas, M., Berdel, W. E., Serve, H., and Muller-Tidow, C. (2004) S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res 64, 5564-5569.
    78. Cagney, G., and Emili, A. (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat Biotechnol 20, 163-170.
    79. Zhou, H., Ranish, J. A., Watts, J. D., and Aebersold, R. (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol 20, 512-515.
    80. Hsu, J. L., Huang, S. Y., Chow, N. H., and Chen, S. H. (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75, 6843-6852.
    81. Huang, S. Y., Tsai, M. L., Wu, C. J., Hsu, J. L., Ho, S. H., and Chen, S. H. (2006) Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics 6, 1722-1734.
    82. Hotchin, N. A., and Hall, A. (1996) Regulation of the actin cytoskeleton, integrins and cell growth by the Rho family of small GTPases. Cancer Surv 27, 311-322.
    83. Ingber, D. (1991) Integrins as mechanochemical transducers. Curr Opin Cell Biol 3, 841-848.
    84. Leone, D. P., Relvas, J. B., Campos, L. S., Hemmi, S., Brakebusch, C., Fassler, R., Ffrench-Constant, C., and Suter, U. (2005) Regulation of neural progenitor proliferation and survival by beta1 integrins. J Cell Sci 118, 2589-2599.
    85. Albert, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular biology of the cell, 4th Ed., Garland Science, New York.
    86. von Wnuck Lipinski, K., Keul, P., Lucke, S., Heusch, G., Wohlschlaeger, J., Baba, H. A., and Levkau, B. (2006) Degraded collagen induces calpain-mediated apoptosis and destruction of the X-chromosome-linked inhibitor of apoptosis (xIAP) in human vascular smooth muscle cells. Cardiovasc Res 69, 697-705.
    87. Ikari, Y., Mulvihill, E., and Schwartz, S. M. (2001) alpha 1-Proteinase inhibitor, alpha 1-antichymotrypsin, and alpha 2-macroglobulin are the antiapoptotic factors of vascular smooth muscle cells. J Biol Chem 276, 11798-11803.
    88. Regan, C. P., Adam, P. J., Madsen, C. S., and Owens, G. K. (2000) Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest 106, 1139-1147.
    89. Izumi, R. E., Valdez, B., Banerjee, R., Srivastava, M., and Dasgupta, A. (2001) Nucleolin stimulates viral internal ribosome entry site-mediated translation. Virus Res 76, 17-29.
    90. Shynlova, O., Williams, S. J., Draper, H., White, B. G., Macphee, D. J., and Lye, S. J. (2007) Uterine Stretch Regulates Temporal and Spatial Expression of Fibronectin Protein and Its Alpha 5 Integrin Receptor in Myometrium of Unilaterally Pregnant Rats. Biol Reprod.
    91. Mishra, S., Murphy, L. C., Nyomba, B. L., and Murphy, L. J. (2005) Prohibitin: a potential target for new therapeutics. Trends Mol Med 11, 192-197.
    92. Jaattela, M., Benedict, M., Tewari, M., Shayman, J. A., and Dixit, V. M. (1995) Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogene 10, 2297-2305.
    93. Algara-Suarez, P., and Espinosa-Tanguma, R. (2004) 8Br-cGMP mediates relaxation of tracheal smooth muscle through PKA. Biochem Biophys Res Commun 314, 597-601.
    94. Kishi, M., Takeuchi, T., Katayama, H., Yamazaki, Y., Nishio, H., Hata, F., and Takewaki, T. (2000) Involvement of cyclic AMP - PKA pathway in VIP-induced, charybdotoxin-sensitive relaxation of longitudinal muscle of the distal colon of Wistar-ST rats. Br J Pharmacol 129, 140-146.
    95. Bardales, J. R., Hellman, U., and Villamarin, J. A. (2007) CK2-mediated phosphorylation of a type II regulatory subunit of cAMP-dependent protein kinase from the mollusk Mytilus galloprovincialis. Arch Biochem Biophys 461, 130-137.
    96. Slater, D. M., Astle, S., Woodcock, N., Chivers, J. E., de Wit, N. C., Thornton, S., Vatish, M., and Newton, R. (2006) Anti-inflammatory and relaxatory effects of prostaglandin E2 in myometrial smooth muscle. Mol Hum Reprod 12, 89-97.
    97. Kuschel, M., Zhou, Y. Y., Spurgeon, H. A., Bartel, S., Karczewski, P., Zhang, S. J., Krause, E. G., Lakatta, E. G., and Xiao, R. P. (1999) beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation 99, 2458-2465.
    98. Kohm, A. P., and Sanders, V. M. (2001) Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 53, 487-525.
    99. Macphee, D. J., and Lye, S. J. (2000) Focal adhesion signaling in the rat myometrium is abruptly terminated with the onset of labor. Endocrinology 141, 274-283.
    100. Engel, J., Furthmayr, H., Odermatt, E., von der Mark, H., Aumailley, M., Fleischmajer, R., and Timpl, R. (1985) Structure and macromolecular organization of type VI collagen. Ann N Y Acad Sci 460, 25-37.
    101. Trueb, B., and Winterhalter, K. H. (1986) Type VI collagen is composed of a 200 kd subunit and two 140 kd subunits. EMBO J 5, 2815-2819.
    102. van der Rest, M., and Garrone, R. (1991) Collagen family of proteins. FASEB J 5, 2814-2823.
    103. von der Mark, H., Aumailley, M., Wick, G., Fleischmajer, R., and Timpl, R. (1984) Immunochemistry, genuine size and tissue localization of collagen VI. Eur J Biochem 142, 493-502.
    104. Baker, N. L., Morgelin, M., Peat, R., Goemans, N., North, K. N., Bateman, J. F., and Lamande, S. R. (2005) Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum Mol Genet 14, 279-293.
    105. Mosher, D. F. (1984) Physiology of fibronectin. Annu Rev Med 35, 561-575.
    106. Schwarzbauer, J. E., and Sechler, J. L. (1999) Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr Opin Cell Biol 11, 622-627.
    107. Sabatelli, P., Bonaldo, P., Lattanzi, G., Braghetta, P., Bergamin, N., Capanni, C., Mattioli, E., Columbaro, M., Ognibene, A., Pepe, G., Bertini, E., Merlini, L., Maraldi, N. M., and Squarzoni, S. (2001) Collagen VI deficiency affects the organization of fibronectin in the extracellular matrix of cultured fibroblasts. Matrix Biol 20, 475-486.
    108. Ekman-Ordeberg, G., Stjernholm, Y., Wang, H., Stygar, D., and Sahlin, L. (2003) Endocrine regulation of cervical ripening in humans--potential roles for gonadal steroids and insulin-like growth factor-I. Steroids 68, 837-847.
    109. Marin-Castano, M. E., Elliot, S. J., Potier, M., Karl, M., Striker, L. J., Striker, G. E., Csaky, K. G., and Cousins, S. W. (2003) Regulation of estrogen receptors and MMP-2 expression by estrogens in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44, 50-59.
    110. Rajapakse, S., Yamano, N., Ogiwara, K., Hirata, K., Takahashi, S., and Takahashi, T. (2007) Estrogen-dependent expression of the tissue kallikrein gene (Klk1) in the mouse uterus and its implications for endometrial tissue growth. Mol Reprod Dev 74, 1053-1063.
    111. Talbert, D. R., Allred, C. D., Zaytseva, Y. Y., and Kilgore, M. W. (2007) Transactivation of ERalpha by Rosiglitazone induces proliferation in breast cancer cells. Breast Cancer Res Treat.
    112. Imamov, O., Morani, A., Shim, G. J., Omoto, Y., Thulin-Andersson, C., Warner, M., and Gustafsson, J. A. (2004) Estrogen receptor beta regulates epithelial cellular differentiation in the mouse ventral prostate. Proc Natl Acad Sci U S A 101, 9375-9380.
    113. Strom, A., Hartman, J., Foster, J. S., Kietz, S., Wimalasena, J., and Gustafsson, J. A. (2004) Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A 101, 1566-1571.
    114. Shim, G. J., Wang, L., Andersson, S., Nagy, N., Kis, L. L., Zhang, Q., Makela, S., Warner, M., and Gustafsson, J. A. (2003) Disruption of the estrogen receptor beta gene in mice causes myeloproliferative disease resembling chronic myeloid leukemia with lymphoid blast crisis. Proc Natl Acad Sci U S A 100, 6694-6699.
    115. Wu, J. J., Geimonen, E., and Andersen, J. (2000) Increased expression of estrogen receptor beta in human uterine smooth muscle at term. Eur J Endocrinol 142, 92-99.
    116. Simhan, H. N., and Caritis, S. N. (2007) Prevention of preterm delivery. N Engl J Med 357, 477-487.

    下載圖示 校內:2008-12-26公開
    校外:2008-12-26公開
    QR CODE