| 研究生: |
葉俊毅 Yeh, Chun-yi |
|---|---|
| 論文名稱: |
非成像均光型TIR-R聚光鏡組於III-V族太陽電池之應用 Design of Uniformity TIR-R Solar Concentration Lenses Using Non-imaging Optics Method for III-V Solar Cell |
| 指導教授: |
沈聖智
Shen, Sheng-chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 非成像光學 、照度配置法 、均光TIR-R聚光鏡 、聚光型太陽模組 |
| 外文關鍵詞: | Irradiance Distribution, HCPV, TIR-R Lenses, Non-imaging Optics |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
III-V族聚光型太陽能系統(High Concentration Photovoltaic System, HCPV)常需一高倍率聚光鏡組,來提升III-V族電池晶片的效率與整體模組的發電功率,而傳統聚光鏡組在透鏡聚光之後,容易使得電池晶片受到不均勻照射與高溫的影響,造成電池的轉換效率下降,因此本文整合非成像光學理論與照度配置設計法,設計一口袋型非成像均光型TIR-R聚光鏡組,聚光鏡組可分複合式TIR-R透鏡與二次光學元件,鏡組在設計上具有高聚光倍率、高均光性及薄形短焦之特點,短焦的設計有利於鏡組方便攜帶之優點,其鏡組規格之幾何集光倍率為1134-Sun,深寬比為0.54,光學傳輸效率為82.6%,均勻度高達94.7%。
由模擬結果顯示,本文所設計之非成像均光型TIR-R聚光鏡組能有效的將大面積的太陽光,匯集到小面積的III-V族電池晶片並使其輻射能量均勻分布於電池接收面上,其發電功率約可達3.746W。由溫度模擬分析,此鏡組可使晶片中心溫度由108度降至69度,整體溫差由45度降至10度,並可使晶片光電轉換效率提升2.8%。故非成像均光型TIR-R聚光鏡組聚光後具有均光的效果,且能有效改善中心熱點之問題。
An III-V solar cell TIR-R concentrator module with shorter focal length of high geometric concentration and high irradiance uniformity is designed, fabricated and measured in this paper. TIR-R concentrator module is based on an innovative method of non-imaging optics and irradiance distribution to design a two stage concentrator with primary and secondary lens. The primary lens utilize optical concept of total internal reflection and refraction to made high irradiance uniformity TIR-R lens and the secondary lens employ refraction principle to reduce the focal length and the thickness of the whole module. In this research, the main characteristic of this concentrator module are the combination of its geometrical concentration of 1134X, optical efficiency of 82.6% with an aspect ratio of 0.54 and irradiance uniformity on the solar cell absorber of 94.7%. The thesis demonstrates that the highly uniform irradiance on the solar cell absorber is the most advantageous characteristic of this concentrator. The simulation of temperature on the cell shows that the center temperature of solar cell decrease from 108 ℃ to 69 ℃ and temperature difference of center temperature and boundary temperature decrease from 45 ℃ to 10 ℃ with traditional concentrator module. The corresponding measurement results show high uniformity and coincidence of the designed structure.
【1】 R. R. King, D. C. Law, Kenneth M. Edmondson, C. M. Fetzer, Geoffrey S. Kinsey, H. Yoon, D. D. Krut, J. H. Ermer, R. A. Sherif, and N. H. Karam, “Advances in High-Efficiency III-V Multijunction Solar Cells,” Advances in OptoElectronics , Article ID 29523,2007.
【2】 A. Luque, V. Andreev, “Concentrator Photovoltaics,” Berlin:Springer, Ch10, pp.199-221, 2007.
【3】 A. Barnett, D. Kirkpatrick, C. Honsberg, “Very High Efficiency Solar Cells,” Proc. of SPIE, vol. 6338, pp. 63380N-63380N-12, 2006.
【4】 M. Yamaguchi, T. Takamoto, K. Araki, N. E. Daukes, “Multi-Junction III–V Solar Cells: Current Status and Future Potential,” Solar Energy, vol. 79, pp. 78-85, 2005.
【5】 R. Leutz, A. Suzuki, A. Akisawa and T. Kashiwagi, “Nonimaging Fresnel Lens Concentrator the Prototype,” Proceedings of the First International Power and Energy Conference, 1999.
【6】 R. Leutz and A. Suzuki, “Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators,” Springer Verlag, Heidelberg, 2001.
【7】 R. Leutz, A. Suzuki, A. Akisawa and T. Kashiwagi, “Developments and Designs of Solar Engineering Fresnel Lenses,” Proceedings Symposium on Energy Engineering, vol. 2, pp. 759-765, 2000.
【8】 R. Leutz, A. Suzuki, A. Akisawa and T. Kashiwagi, “Design of a Nonimaging Fresnel Lens for Solar Concentrators,” Solar Energy , vol. 65, pp. 379-387, 1999.
【9】 R. Leutz, A. Suzuki, A. Akisawa, T. Kashiwagi, “Shaped Nonimaging Fresnel Lenses,” Journal of Optics A : Pure and Applied Optics, vol. 2, pp. 112-116, 2000.
【10】 M. Yamaguchi, T. Takamoto, T. Agui et al., “Japanese Activities of R&D on III-V Concentrator Solar Cells and Modules,” Proc. of the 19th European Photovoltaic Solar Energy Conference, pp. 2014-2017, 2004.
【11】 C. Sierra, A. J. Vazquez , “High Solar Energy Concentration with a Fresnel Lens,” Journal of Materials Science, vol.40, pp. 1339-1343, Ch10, pp.199-221, 2005.
【12】 A. Luque, V. Andreev, “Concentrator Photovoltaics,” Berlin : Springer, Ch6, pp.113-133, 2007.
【13】 J. C. Minano, J. C. Gonzalez, and P. Benitez, “A High-Gain, Compact, Nonimaging Concentrator: RXI,” Applied Optics, vol. 34, pp. 7850-7856, 1995.
【14】 F. Munoz, P. Benitez, O. Dross, J. C. Minano, B. Parkyn, “Simultaneous Multiple Surface Design of Compact Air-Gap Collimators for Light-Emitting Diodes,” Optical Engineering, vol. 43, pp. 1522-1530, 2004.
【15】 R. Winston, J. C. Minano, P. Benitez, “Nonimaging Optics,” Elsevier, 2005.
【16】 J. L. Alvarez, M. Hernández, P. Benitez, J. C. Minano, “RXI Concentrator for 1000X Photovoltaic Energy Conversion,” SPIE, vol. 3781, pp. 30-37 1999.
【17】 M. Hernandeza, P. Benitezb, J. C. Minanob, A. Cvetkovic, et al., “XR: A High-Performance PV Concentrator,” Proc. of SPIE, vol. 6649, pp. 664904-664904-10, 2007.
【18】 A. Cvetkovic, M. Hernandez, P. Benitez, et al, “The XR Nonimaging Photovoltaic Concentrator,” SPIE, vol. 6670, pp. 667005-667005-10, 2007.
【19】 O. Dross, R. Mohedano , M. Hernandez , A. Cvetkovic, J. C. Minano, P. Benitez, “Kohler Integrators Embedded into Illumination Optics add Functionality,” Proc. of SPIE, vol. 7103, pp. 71030G-71030G-12, 2008.
【20】 R. Winston, P. Benitez, A. Cvetkovic, “High-Concentration Mirror-Based Kohler Integrating System for Tandem Solar Cells,” SPIE, vol. 6342, pp. 634213-634213-8, 2006.
【21】 P. Benitez, A. Cvetkovic, R. Winston, and L. Reed, “New High-Concentration Mirror-Based Kohler Integrating Optical Design for Multijunction Solar Cells,” International Optical Design Conference, paper: TuD3, pp. 1-3, 2006.
【22】 L. Reed, R. Winston, A. Ritschel, “Field Results of a Kohler Integrating Photovoltaic System,” Proc. of SPIE, vol. 6670, pp. 667006-667006-7, 2007.
【23】 M. Hernandez, A. Cvetkovic, P. Benitez, J. C. Minano, “High-Performance Kohler Concentrators with Uniform Irradiance on Solar Cell,” Proc. of SPIE, vol. 7059, pp. 705908-705908-9, 2008.
【24】 W.P. Mulligan, A.Terao, S.G. Daroczi, O. C. Pujol, M.J. Cudzinovic, “A Flat-Plate Concentrator : Micro-Concentrator Design Overview,” Photovoltaic Specialists Conference, pp. 1495-1497, 2000.
【25】 A. Terao, S.G. Daroczi, S.J. Coughlin, W.P. Mulligan, R.M. Swanson, M. Hernandez, P. Benitez, J.C. Minano, “New Developments on the Flat-plate Micro-Concentrator Module,” 3rd World Conference on Photovoltaic Energy Conversion, pp. 861-864, 2003.
【26】 M. Hernandez, P. Benitez, J. C. Minano, J. L. Alvarez, V. Diaz, J. Alonso, “Sunlight Spectrum on Cell Through Very High Concentration Optics,” 3rd World Conference Photovoltaic Energy Conversion, pp. 889-891, 2003.
【27】 J. L. Alvarez, V. Diaz, J. Alonso, “Optics Design Key Points for High Gain Photovoltaic Solar Energy Concentrators,” Proc. of SPIE, vol. 5962, pp. 298-306, 2005.
【28】 I. Antón, R. Solar, G. Sala, and D. Pachón, “IV Testing of Concentration Modules and Cells with Non-Uniform Light Patterns,” Proceedings of the 17th European Photovoltaic Solar Energy Conference and Exhibition, pp. 611-614, 2001.
【29】 J. Frankline, Coventry, “Effects of Highly Non-uniform Illumination Distribution on Electrical Performance of Solar Cells,” 40th Anzses Solar energy conference, 2002.
【30】 J. Nilsson, “Optical Design and Characterization of Solar Concentrators for Photovoltaics,” Report EBD-T-05/6, 2005.
【31】 Y. Lim, “Problems and Solutions on Thermodynamics and Statistical Mechanics,” World Scientific, 1990.
【32】 K. Kreske, “Optical Design of a Solar Flux Homogenizer for Concentrator Photovoltaics,” Applied Optics, vol. 41, pp. 2053-2058, 2002.
【33】 J. L. Alvarez, M. Hernandez, P. Benitez, J. C. Minano, “TIR-R Concentrator: A New Compact High-Gain SMS Design,” Proc. of SPIE, vol. 4446, pp. 32-42, 2002
【34】 http://www.spectrolab.com/