簡易檢索 / 詳目顯示

研究生: 郭婉茹
Kuo, Wan-Ru
論文名稱: 降雨觸發崩塌最適時空尺度之分析研究
Optimal Temporal and Spatial Scale for Rainfall-Triggered Landslides
指導教授: 林慶偉
Lin, Ching-Wee
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 崩塌密度最適尺度雨量淺層崩塌
外文關鍵詞: landslide density, optimal scale, rainfall, shallow landslides
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 崩塌密度表示一地區的崩塌面積相對總面積的比例,是在研究崩塌的發生特性及其影響因子或分析山崩潛感時的重要指標。然而崩塌密度會因為選取的範圍大小而有差異,甚至沒有代表性。因此本研究嘗試分析有效代表研究區崩塌密度特性的取樣範圍。
    2009年極端降雨事件-莫拉克颱風,在台灣南部高屏溪流域造成大範圍崩塌,因此有足夠的大尺寸的取樣樣本,適合用來分析尺度。本研究採用事件前後的福衛二號衛星影像所判釋的崩塌分佈資料,與QPESUMS雷達估計雨量,來分析不同尺度下的降雨與崩塌密度的Pearson積差相關。若尺度過大或過小,都會使相關性降低,這意謂著最高相關性可用來指示最適尺度。
    研究結果顯示,降雨觸發崩塌的最適尺度,在旗山溪集水區是直徑6公里,在荖濃溪集水區是直徑10公里,在板岩區則為直徑12公里;若尺度選取範圍分別小於最適尺度,其選取範圍內的崩塌密度等特徵代表性不足,若大於最適尺度,則其選取範圍內的雨量及崩塌密度等特徵會被均化,因而降低其相關性。另外以莫拉克颱風為例,雨量因子以連續12小時累積雨量的最大值為觸發崩塌的最適時間長度;但在板岩區則為連續48小時累積雨量的最大值,這可能是因為岩性差異所致。

    Landslide density is used to describe the ratio of the landslide area to total area in studying the characteristics of landslide occurrences, the causes of landslide occurrences, and the landslide susceptibility analysis. However, the landslide density may vary much because of the different dimensions selected. In this study, we try to analyze the optimal dimensions which landslide density can be representative effectively.

    The Typhoon Morakot brought extreme rainfall and caused thousands of landslides across quite large areas in southern Taiwan. Therefore, it’s a good opportunity to study the scales for landslides. We use the images from FORMOSA-2 and estimation rainfall data from QPESUMS (quantitative precipitation estimation and segregation using multiple sensors) system during Morakot typhoon. As for the method, the Pearson’s correlation coefficient is used to analyze the association between rainfall and landslide density at different scales. The correlation coefficient is found to diminish when the scales is too large or too small, indicating that an optimal scale is necessary for studying the landslides.

    The results indicated that the optimal scale to analyze the rainfall-triggered landslides is 6 kilometer diameter scale at Chi-Shan River watershed, 10 kilometer diameter scale at Laonong River watershed, and 12 kilometer diameter scale at slate region. When the selected dimensions smaller than the optimal dimension, the characteristics of landslides can’t be representative. While the selected dimensions larger than the optimal ones, the variability of characteristics of landslides are obscured by average. The analysis of Morokot typhoon event showed that the maximum 12-hour rolling rainfall is the optimal time length to study the rainfall-triggered landslides. However, for slate region, the optimal time length is the maximum 48-hour rolling rainfall. The difference in result could be resulted from the difference in lithology.

    摘要 I Abstract II 誌謝 IV 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究區域 2 1.2.1 荖濃溪與旗山溪集水區概述 2 1.2.2 地形及水系 3 1.2.3 地質 4 1.2.4 氣候 9 第二章 前人研究 10 2-1 尺度分析 10 2-2 觸發因子-降雨 12 2-3 雷達估計雨量 14 2-4 深層崩塌與淺層崩塌 15 第三章 研究流程與方法 17 3-1 新增淺層崩塌圖層建置 19 3-2 雨量資料處理 22 3.2.1 雨量因子的計算 22 3.2.2 雨量因子的半變異圖 24 3-3 相關係數分析 29 3-4 固定尺度範圍劃分 30 3.4.1 依集水區分區劃分尺度 31 3.4.1.1 旗山溪集水區尺度劃分 31 3.4.1.2 荖濃溪集水區尺度劃分 32 3.4.1.3 劃分尺度範圍部分重疊 33 3.4.2 依岩性分區劃分尺度 34 3.4.2.1 砂頁岩區尺度劃分 34 3.4.2.2 板岩區尺度劃分 35 3-5 非固定尺度-子集水區尺度範圍劃分 36 第四章 研究成果 37 4-1 崩塌密度在空間尺度上的變異性 37 4-2 雨量因子空間的變異性 39 4-3 旗山溪集水區雨量因子與崩塌密度的相關性 41 4-4 荖濃溪集水區雨量因子與崩塌密度的相關性 44 4-5 尺度範圍部分重疊區雨量因子與崩塌密度的相關性 47 4-6 砂頁岩區雨量因子與崩塌密度的相關性 49 4-7 板岩區雨量因子與崩塌密度的相關性 52 4-8 子集水區尺度下的雨量因子與崩塌密度相關性 55 第五章 討論 56 5-1 雨量強度的時間長度 56 5-2 Pearson相關係數的應用 58 5-3 最適尺度 59 5-4 岩性劃分與集水區劃分下尺度的比較 60 5-5 尺度範圍的劃分 61 第六章 結論與建議 62 6-1 結論 62 6-2 建議 63 參考文獻 64 附錄一 研究區域降雨與崩塌密度資料 68

    何春蓀 (2006),臺灣地質概論臺灣地質圖說明書,第二版第五刷,台北:經濟部中央地質調查所,頁40-106。
    張嘉玲 (2009),集水區子流域劃分尺度最佳化分析之研究,12頁。
    陳盈赬 (2007),曾文水庫集水區之地形幾何特性與山崩分佈關係之研究,國立成功大學資源工程學系碩士班論文,120頁。
    陳樹群、翁愷翎、吳俊鋐 (2010),玉峰溪集水區崩塌特性與崩塌體積之探討,中華水土保持學報,第四十一卷第三期,頁217-229。
    經濟部中央地質調查所(2009),集水區地質調查及山崩土石流調查與發生潛勢評估計畫(2/3),594頁。
    經濟部水利署 (2011),高屏溪第二次河川情勢調查期中成果報告,頁附5-1-5-35。
    劉守恆 (2002),衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學系碩士班論文,83頁。
    劉哲欣、吳亭燁、陳聯光、林聖琪、林又青、陳樹群、周憲德 (2011),臺灣地區重大岩體滑動案例之土方量分析,中華水土保持學報,第四十二卷第二期,頁150-159。
    謝正倫、陳俞旭、郭玉樹、賴文基、林昂、內田太郎 (2011),他山之石 日本深層崩塌潛勢區位研究,營建知訊,344期,10頁
    Bedient, P. B., & Huber, W. C. (1988). Hydrology and floodplain analysis.
    Caine, N. (1980). The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler. Series A. Physical Geography, 23-27.
    Chang, K. t., Chiang, S. H., & Lei, F. (2008). Analysing the Relationship Between Typhoon‐Triggered Landslides and Critical Rainfall Conditions. Earth Surface Processes and Landforms, 33(8), 1261-1271. doi: 10.1002/esp.1611
    Chen, C.-Y., Lin, L.-Y., Yu, F.-C., Lee, C.-S., Tseng, C.-C., Wang, A.-H., & Cheung, K.-W. (2007). Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Natural Hazards, 40(2), 447-461.
    Chiang, S.-H., & Chang, K.-T. (2009). Application of radar data to modeling rainfall-induced landslides. Geomorphology, 103(3), 299-309. doi: 10.1016/j.geomorph.2008.06.012
    Chok, N. S. (2010). Pearson's Versus Spearman's and Kendall's Correlation Coefficients for Continuous Data. University of Pittsburgh.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences: Routledge Academic.
    Dai, F., & Lee, C. (2001). Frequency–volume relation and prediction of rainfall-induced landslides. Engineering Geology, 59(3), 253-266.
    Evans, I. S. (2003). Scale-specific landforms and aspects of the land surface. Concepts and modelling in geomorphology: International perspectives, 61-84.
    Eyles, G. (1983). The distribution and severity of present soil erosion in New Zealand. New Zealand Geographer, 39(1), 12-28.
    Finlay, P.J., Fell, R., Maguire, P.K., 1997. The relationship between the probability of landslide occurrence and rainfall. Canadian Geotechnical Journal 34, 811-824
    Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall.
    Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98(3-4), 239-267. doi: 10.1007/s00703-007-0262-7
    Iwahashi, J., Kamiya, I., & Yamagishi, H. (2012). High-resolution DEMs in the study of rainfall- and earthquake-induced landslides: Use of a variable window size method in digital terrain analysis. [Article]. Geomorphology, 153, 29-38. doi: 10.1016/j.geomorph.2012.02.002
    Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406-421.
    McCuen, R. H. (1989). Hydrologic analysis and design: Prentice-Hall Englewood Cliffs, NJ.
    Menzel, W. P., Chiou, P. T., Chen, C.-R., Chang, P.-L., Jian, G.-J., & Iwasaki, T. (2005). Status and outlook of very short range forecasting system in Central Weather Bureau, Taiwan. 5658, 185-196. doi: 10.1117/12.601195
    Pasuto, A., & Silvano, S. (1998). Rainfall as a trigger of shallow mass movements. A case study in the Dolomites, Italy. Environmental Geology, 35(2-3), 184-189.
    Peruccacci, S., Brunetti, M. T., Luciani, S., Vennari, C., & Guzzetti, F. (2012). Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology, 139-140, 79-90. doi: 10.1016/j.geomorph.2011.10.005
    Phillips, D. L., Dolph, J., & Marks, D. (1992). A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology, 58(1), 119-141.
    Roering, J. J., Kirchner, J. W., & Dietrich, W. E. (2005). Characterizing structural and lithologic controls on deep-seated landsliding: Implications for topographic relief and landscape evolution in the Oregon Coast Range, USA. Geological Society of America Bulletin, 117(5), 654. doi: 10.1130/b25567.1
    Tabios, G. Q., & Salas, J. D. (1985). A comparative analysis of techniques for spatial interpolation of precipitation1. JAWRA Journal of the American Water Resources Association, 21(3), 365-380
    Tarolli, P., & Tarboton, D. (2006). A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping. Hydrology and Earth System Sciences, 10, 663-677.
    Thiessen, A. H. (1911). Precipitation averages for large areas. Monthly weather review, 39(7), 1082-1089.
    Zezere, J. L., Trigo, R. M., & Trigo, I. F. (2005). Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Sciences, 5(3), 331-344.
    Zhang, W., & Montgomery, D. R. (1994). Digital elevation model grid size, landscape representation. Water Resources Research, 30(4), 1019-1028.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE