簡易檢索 / 詳目顯示

研究生: 徐良聖
Syu, Liang-Sheng
論文名稱: 利用銠金屬卡賓氮-氫鍵嵌入反應由予體/受體重氮膦酸酯構成α-胺基膦酸酯之研究
Synthesis of α-Aminophosphonates from Donor/Acceptor Diazophosphonates through Catalytic Rhodium Carbene Insertions into N-H Bonds
指導教授: 周鶴軒
Chou, Ho-Hsuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 228
中文關鍵詞: 予體/受體類型的重氮膦酸酯銠金屬卡賓體氮-氫鍵插入反應胺基膦酸酯
外文關鍵詞: donor/acceptor diazo phosphate compounds, rhodium carbene N-H insertion reaction, α-aminophosphate compounds
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要分為兩部分,第一部分我們成功地利用Seyferth-Gilbert 試劑在二環[4.3.0]-1,5-二氮-5-十一烯(DBU)的促進下與溴化物進行取代反應可廣泛合成予體/受體類型的重氮膦酸酯化合物,有別於以往的文獻須利用希夫鹼與亞膦酸二甲酯做縮合反應,我們反倒能保留住此敏感性羰基於分子結構上。
    第二部分則將上述所合成的α-重氮化合物藉由銠金屬卡賓體分子間的氮-氫鍵插入反應轉化為各類型同時具有醛基、酮基、酯基及醯胺基的α-胺基膦酯合物。在電子效應層面上,α-重氮化合物上推、拉電子基效應對產率影響並不明顯,可達致79 - 98%;而在作為胺基來源的苯胺上則是拉電子基效應比較佳,我們推測此反應機構偏向於協同反應路徑(concerted)而非逐步路徑(stepwise)。此外在立體障礙及結構層面上,若重氮官能基明顯裸露則易於與銠金屬反應可提升反應性。
    藉由此有效率的兩步驟反應,我們能夠廣泛合成出四十種以上各類型的胺基膦酸酯化合物,其中包含五種丙胺酸(Phe)、色胺酸(Try)、酪胺酸(Tyr)、天門冬醯胺(Asn)及天冬胺酸(Asp)等天然胺基酸所對應的α-胺基膦酸酯化合物,此外若以鄰甲基苯胺(o-toluidine)取代苯胺則最後可利用三氯異氰脲(trichloroisocyanuric acid)去除保護基而得到胺基膦酸鹽類。

    The two continuous reactions were included in the thesis for the synthesis of various α-aminophosphonates. In the first reaction, we successfully synthesized extensive donor/acceptor diazo phosphate compounds through the bromo-substitution with the Seyferth-Gilbert reagent under the activation of bicyclo[4.3.0]-1,5-diaza-5-undecene (DBU). This method avoided the requirement of Schiff base formation in other literatures and reserved the sensitive carbonyl groups on the chemical structures.

    The synthesized -diazoalkylphosphonates were then appealed to the intermolecular N-H insertion reaction with rhodium carbenoid and aniline to from the α-aminophosphonates with the tolerance of aldehyde, ketone, ester, and amide functional groups. The electronic effect on the -diazophosphonates was not obvious and steadily gave moderate to excellent yield (79-98%). However, the deactivating but electron-releasing groups on the aniline seemed to deliver better yield. We concluded the mechanism might undergo the concerted route rather than the stepwise one and the steric effect promote the access of the diazo compounds to the rhodium metal would increase the reaction rate and yield.

    According to the two-steps strategy, we successfully synthesized 40 kinds of α-aminophosphate compounds including five phosphonate derivatives of natural amino acids such as phenylalanine, tryptophan, tyrosine, asparagine, and aspartic acid. Instead of aniline, the cleavable o-toluidine could afford the aminophosphonic hydrochloride salt with the treatment of trichloroisocyanuric acid.

    中文摘要 ....................................... II 英文摘要...........III 誌謝 .......................................... VI 目錄 ........................................ VII 表目錄 ......................................... X 圖目錄 ........................................ XI 流程圖 ........................................ XII 試劑名稱與縮寫對照表 ............................. XIII 第一章 前言 ...................................... 1 1.1 α-胺基膦酸酯(α-Aminophosphonate) ................... 1 1.2 Kabachnik–Fields 反應 and Pudovik 反應 ................ 4 1.3 α-重氮膦酸酯化合物 (α-diazophosphonates compound) ......... 6 1.4 類卡賓(Carbenoid) ............................. 9 1.5 C-H Insertion ............................... 10 1.6 N-H Insertion 反應 (Heteroatom Insertion 反應) ........... 12 1.7 研究動機 .................................. 12 第二章 結果與討論 ................................ 14 2.1 合成α-胺基膦酸酯的合成-所需重氮化合物的研究 ........... 14 2.2 α-胺基膦酸酯的合成-引入所需胺基的探討 ................ 18 2.3 α-胺基膦酸酯的合成探討 ......................... 19 2.3.1 條件最佳化測試 ............................. 19 2.3.2 官能基耐受度測試-重氮衍生物及苯胺衍生物 ............. 22 2.3.3 合成模擬類似胺基酸分子之探討 .................... 28 2.4 異原子嵌入反應測試 ............................ 30 第三章 結論 .................................... 31 Chapter 4 Experiment ................................ 32 4.1 General information ........................... 32 4.1.1 Materials .................................. 32 4.1.2 Methods ................................. 32 4.1.3 Machines .................................. 32 4.2 Synthesis of dimethyl (diazomethyl) phosphonate (DAMP) (3) ..... 33 4.2.1 Imidazole-1-sulfonyl azide (1) ...................... 33 4.2.2 Dimethyl (1-diazo-2-oxopropyl) phosphonate (Bestmann-Ohira Reagent) (2) .................................. 34 4.2.3 Dimethyl (diazomethyl) phosphonate (DAMP) (Seyferth-Gilbert Reagent) (3) .................................. 35 4.3 General procedure for the synthesis of α-substituted dimethyl (diazomethyl)phosphonate compounds (A) .................. 35 4.4 Synthesis of Amino Protecting Groups compounds ........... 57 4.5 General procedure for Rh(II) Catalyzed Carbene Insertion into N−H Bond in Toluene (B) ............................... 60 4.6 Synthesis of dimethyl (2-phenyl-1-(o tolylthio)ethyl)phosphonate (24) 91 4.7 Synthesis of dimethyl (2-phenyl-1-(o-tolylthio)ethyl)phosphonate (26)92 4.8 Synthesis of tert-Butyl 3-(bromomethyl)-1H-indole-1-carboxylate .. 94 4.9 Synthesis of 1-(bromomethyl)-4-(methoxymethoxy)benzene ...... 96 4.9.1 4-(Methoxymethoxy)benzaldehyde ................... 96 4.9.2 (4-(Methoxymethoxy)phenyl)methanol ................ 97 4.9.3 1-(Bromomethyl)-4-(methoxymethoxy)benzene ............ 98 4.10 Synthesis of N-benzyl-2-bromoacetamide ............... 99 4.11 Synthesis of 3-(bromomethyl)furan ................... 99 4.11.1 Furan-3-ylmethanol .......................... 99 4.11.2 3-(Bromomethyl)furan ......................... 100 4.12 Synthesis of 3-(bromomethyl)thiophene ............... 101 4.13 Synthesis of 2-(bromomethyl)thiophene ............... 101 4.14 Synthesis of 2-(bromomethyl)benzofuran ............... 102 4.14.1 Benzofuran-2-ylmethanol....................... 102 4.14.2 2-(Bromomethyl)benzofuran ..................... 102 第五章 參考文獻 .................................. 104 第六章 附錄 .................................... 112

    第五章 參考文獻
    [1]. Moonen, K.; Laureyn, I.; Stevens, C. V., Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity. Chem. Rev., 2004, 104, 6177-6216.
    [2]. Ye, M. Y.; Yao, G. Y.; Pan, Y. M.; Liao, Z. X.; Zhang, Y.; Wang, H. S., Synthesis and antitumor activities of novel α-aminophosphonate derivatives containing an alizarin moiety. Eur. J. Med. Chem., 2014, 83, 116-128.
    [3]. Mulla, S. A. R.; Pathan, M. Y.; Chavan, S. S.; Gample, S. P.; Sarkar, D., Highly efficient one-pot multi-component synthesis of α-aminophosphonates and bis-α-aminophosphonates catalyzed by heterogeneous reusable silica supported dodecatungstophosphoric acid (DTP/SiO2) at ambient temperature and their antitubercular evaluation against Mycobactrium Tuberculosis. RSC Advances, 2014, 4, 7666-7672.
    [4]. Lacbay, C. M.; Mancuso, J.; Lin, Y. S.; Bennett, N.; Götte, M.; Tsantrizos, Y. S., Modular Assembly of Purine-like Bisphosphonates as Inhibitors of HIV-1 Reverse Transcriptase. J. Med. Chem., 2014, 57, 7435-7449.
    [5]. Leung, C. Y.; Park, J.; De Schutter, J. W.; Sebag, M.; Berghuis, A. M.; Tsantrizos, Y. S., Thienopyrimidine Bisphosphonate (ThPBP) Inhibitors of the Human Farnesyl Pyrophosphate Synthase: Optimization and Characterization of the Mode of Inhibition. J. Med. Chem., 2013, 56, 7939-7950.
    [6]. (a) Bukšnaitienė, R.; Urbanaitė, A.; Čikotienė, I., Formation of Condensed 1H-Pyrrol-2-ylphosphonates and 1,2-Dihydropyridin-2-ylphosphonates via Kabachnik–Fields Reaction of Acetylenic Aldehydes and Subsequent 5-exo-dig or 6-endo-dig Cyclizations. J. Org. Chem., 2014, 79, 6532-6553; (b) Nakamura, Y.; Ukita, T., Construction of Heterocyclic Compounds by Use of α-Diazophosphonates:  New One-Pot Syntheses of Indoles and Isocoumarins. Org. Lett., 2002, 4, 2317-2320.
    [7]. Kafarski, P.; Lejczak, B., BIOLOGICAL ACTIVITY OF AMINOPHOSPHONIC ACIDS. Phosphorus, Sulfur, and Silicon, 1991, 63, 193-215.
    [8]. Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F., Synthesis of Nucleoside Phosphate and Phosphonate Prodrugs. Chem. Rev., 2014, 114, 9154-9218.
    [9]. Bhagat, S.; Chakraborti, A. K., An Extremely Efficient Three-Component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik−Fields Reaction) for the Synthesis of α-Aminophosphonates Catalyzed by Magnesium Perchlorate. J. Org. Chem., 2007, 72, 1263-1270.
    [10]. Romanenko, V. D.; Kukhar, V. P., Fluorinated Phosphonates:  Synthesis and Biomedical Application. Chem. Rev., 2006, 106, 3868-3935.
    [11]. Chen, F. Y.; Uang, B. J., Enantioselective Synthesis of (R)-3-(3,4-Dihydroxyphenyl)alanine from tert-Butyl Glycinate. J. Org. Chem., 2001, 66, 3650-3652.
    [12]. Kobayashi, S.; Kiyohara, H.; Nakamura, Y.; Matsubara, R., Catalytic Asymmetric Synthesis of α-Amino Phosphonates Using Enantioselective Carbon−Carbon Bond-Forming Reactions. J. Am. Chem. Soc., 2004, 126, 6558-6559.
    [13]. Denmark, S. E.; Chatani, N.; Pansare, S. V., Asymmetric electrophilic amination of chiral phosphorus-stabilized anions. Tetrahedron, 1992, 48, 2191-2208.
    [14]. Palacios, F.; Aparicio, D.; López, Y.; de los Santos, J. M., Synthesis of functionalized α-amino-phosphine oxides and -phosphonates by addition of amines and aminoesters to 4-phosphinyl- and 4-phosphonyl-1,2-diaza-1,3-butadienes. Tetrahedron, 2005, 61, 2815-2830.
    [15]. Błażewska, K.; Gajda, T., A concise synthesis of diethyl 1-(tert-butoxycarbonylamino)-1-alkenylphosphonates. Tetrahedron, 2004, 60, 11701-11707.
    [16]. Mannich, C.; Krösche, W., Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm., 1912, 250, 647-667.
    [17]. Fields, E. K., The Synthesis of Esters of Substituted Amino Phosphonic Acids1a. J. Am. Chem. Soc., 1952, 74, 1528-1531.
    [18]. Kabachnik, M. M.; Zobnina, E. V.; Beletskaya, I. P., Catalyst-Free Microwave-Assisted Synthesis of α-Aminophosphonates in a Three-Component System: R1C(O)R2-(EtO)2P(O)H-RNH2. Synlett, 2005, 09, 1393-1396.
    [19]. Akbari, J.; Heydari, A., A sulfonic acid functionalized ionic liquid as a homogeneous and recyclable catalyst for the one-pot synthesis of α-aminophosphonates. Tetrahedron Lett., 2009, 50, 4236-4238.
    [20]. Das, B.; Satyalakshmi, G.; Suneel, K.; Damodar, K., Organic Reactions in Water: A Distinct Novel Approach for an Efficient Synthesis of α-Amino Phosphonates Starting Directly from Nitro Compounds. J. Org. Chem., 2009, 74, 8400-8402.
    [21]. Li, X. C.; Gong, S. S.; Zeng, D. Y.; You, Y. H.; Sun, Q., Highly efficient synthesis of α-aminophosphonates catalyzed by hafnium(IV) chloride. Tetrahedron Lett., 2016, 57, 1782-1785.
    [22]. Han, W.; Mayer, P.; Ofial, A. R., Iron-Catalyzed Oxidative Mono- and Bis-Phosphonation of N,N-Dialkylanilines. Adv. Synth. Catal., 2010, 352, 1667-1676.
    [23]. Antos, J. M.; Francis, M. B., Selective Tryptophan Modification with Rhodium Carbenoids in Aqueous Solution. J. Am. Chem. Soc., 2004, 126, 10256-10257.
    [24]. Ramakrishna, K.; Sivasankar, C., Iridium catalyzed acceptor/acceptor carbene insertion into N–H bonds in water. Org. Biomol. Chem., 2017, 15, 2392-2396.
    [25]. Nicolle, S. M.; Moody, C. J., Potassium N-Iodo p-Toluenesulfonamide (TsNIK, Iodamine-T): A New Reagent for the Oxidation of Hydrazones to Diazo Compounds. Chem. Eur. J., 2014, 20, 4420-4425.
    [26]. Nicolle, S. M.; Hayes, C. J.; Moody, C. J., Alkyl Halide-Free Heteroatom Alkylation and Epoxidation Facilitated by a Recyclable Polymer-Supported Oxidant for the In-Flow Preparation of Diazo Compounds. Chem. Eur. J., 2015, 21, 4576-4579.
    [27]. Pramanik, M. M. D.; Chaturvedi, A. K.; Rastogi, N., Substituent controlled reactivity switch: selective synthesis of α-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann–Ohira reagent. Chem. Commun., 2014, 50, 12896-12898.
    [28]. Pramanik, M. M. D.; Rastogi, N., Synthesis of α-diazo-β-keto esters, phosphonates and sulfones via acylbenzotriazole-mediated acylation of a diazomethyl anion. Org. Biomol. Chem., 2016, 14, 1239-1243.
    [29]. Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L., Chem. Rev., 2010, 110, 704-724.
    [30]. Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H., Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes. Science, 2013, 339, 307.
    [31]. Barluenga, J.; Martínez, S.; Suárez-Sobrino, A. L.; Tomás, M., The [2 + 1] and [4 + 3] Cyclization Reactions of Fulvenes with Fischer Carbene Complexes:  New Access to Annulated Cyclopentanones. J. Am. Chem. Soc., 2002, 124, 5948-5949.
    [32]. Barluenga, J.; Vicente, R.; Barrio, P.; López, L. A.; Tomás, M., Metal-Controlled Selective [3+2] Cyclization Reactions of Alkenyl Fischer Carbene Complexes and Allenes. J. Am. Chem. Soc., 2004, 126, 5974-5975.
    [33]. Padwa, A.; Hornbuckle, S. F., Ylide formation from the reaction of carbenes and carbenoids with heteroatom lone pairs. Chem. Rev., 1991, 91, 263-309.
    [34]. Morilla, M. E.; Molina, M. J.; Díaz-Requejo, M. M.; Belderraín, T. R.; Nicasio, M. C.; Trofimenko, S.; Pérez, P. J., Copper-Catalyzed Carbene Insertion into O−H Bonds:  High Selective Conversion of Alcohols into Ethers. Organometallics, 2003, 22, 2914-2918.
    [35]. Davies, H. M. L.; Morton, D., Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev., 2011, 40, 1857-1869.
    [36]. Ramakrishna, K.; Thomas, J. M.; Sivasankar, C., A Green Approach to the Synthesis of α-Amino Phosphonate in Water Medium: Carbene Insertion into the N–H Bond by Cu(I) Catalyst. J. Org. Chem., 2016, 81, 9826-9835.
    [37]. Li, Q.-Z.; Zhang, X.; Xie, K.; Dai, Q.-S.; Zeng, R.; Liu, Y.-Q.; Jia, Z.-Q.; Feng, X.; Li, J.-L., Diastereodivergent synthesis of cyclopropanes via on-water [2 + 1] annulations of diazo compounds with electron-deficient alkenes. Green Chemistry, 2019, 21, 2375-2379.
    [38]. Xiao, T.; Mei, M.; He, Y.; Zhou, L., Blue light-promoted cross-coupling of aryldiazoacetates and diazocarbonyl compounds. Chem. Commun., 2018, 54, 8865-8868.
    [39]. Wong, F. M.; Wang, J.; Hengge, A. C.; Wu, W., Mechanism of Rhodium-Catalyzed Carbene Formation from Diazo Compounds. Org. Lett., 2007, 9, 1663-1665.
    [40]. Huang, D.; Jiang, G.-M.; Chen, H.-X.; Gao, W.-D., Preparation of N-Acetyl-2-arylglycin Esters by N-H Insertion Reaction of Aryldiazoacetates with Acetamide. Synth. Commun., 2009, 40, 229-234.
    [41]. Liu, G.; Li, J.; Qiu, L.; Liu, L.; Xu, G.; Ma, B.; Sun, J., Palladium-catalyzed carbenoid based N–H bond insertions: application to the synthesis of chiral α-amino esters. Org. Biomol. Chem., 2013, 11, 5998-6002.
    [42]. (a) Mai, B. K.; Szabó, K. J.; Himo, F., Mechanisms of Rh-Catalyzed Oxyfluorination and Oxytrifluoromethylation of Diazocarbonyl Compounds with Hypervalent Fluoroiodine. ACS Catal., 2018, 8, 4483-4492; (b) Qu, Z.; Shi, W.; Wang, J., Linear Free Energy Correlation Analysis on the Electronic Effects of Rh(II) Carbene O−H Insertion. J. Org. Chem., 2004, 69, 217-219.
    [43]. Gillingham, D.; Fei, N., Catalytic X–H insertion reactions based on carbenoids. Chem. Soc. Rev., 2013, 42, 4918-4931.
    [44]. Haigh, D., Rhodium carbenoid O-H insertion reactions with phenols; A facile method for the synthesis of trialkyl 2-aryloxyphosphonoacetates and their use in the preparation of 2-aryloxy-3-phenylpropanoates. Tetrahedron, 1994, 50, 3177-3194.
    [45]. Prasad, K.; Kneussel, P.; Schulz, G.; Stütz, P., A new method of carbon extension at C-4 of azetidinones. Tetrahedron Lett., 1982, 23, 1247-1250.
    [46]. Goddard-Borger, E. D.; Stick, R. V., An Efficient, Inexpensive, and Shelf-Stable Diazotransfer Reagent:  Imidazole-1-sulfonyl Azide Hydrochloride. Org. Lett., 2007, 9, 3797-3800.
    [47]. Nahrwold, M.; Bogner, T.; Eissler, S.; Verma, S.; Sewald, N., “Clicktophycin-52”: A Bioactive Cryptophycin-52 Triazole Analogue. Org. Lett., 2010, 12, 1064-1067.
    [48]. Pramanik, M. M.; Chaturvedi, A. K.; Rastogi, N., Substituent controlled reactivity switch: selective synthesis of alpha-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann-Ohira reagent. Chem. Commun., 2014, 50, 12896-8.
    [49]. Plamont, R.; Graux, L. V.; Clavier, H., Highly Selective Syn Addition of 1,3-Diones to Internal Ynamides Catalyzed by Zinc Iodide. Eur. J. Org. Chem., 2018, 11, 1372-1376.
    [50]. Augurusa, A.; Mehta, M.; Perez, M.; Zhu, J.; Stephan, D. W., Catalytic reduction of amides to amines by electrophilic phosphonium cations via FLP hydrosilylation. Chem. Commun., 2016, 52, 12195-12198.
    [51].Dialer, L. O.; Selivanova, S. V.; Müller, C. J.; Müller, A.; Stellfeld, T.; Graham, K.; Dinkelborg, L. M.; Krämer, S. D.; Schibli, R.; Reiher, M.; Ametamey, S. M., Studies toward the Development of New Silicon-Containing Building Blocks for the Direct 18F-Labeling of Peptides. J. Med. Chem., 2013, 56, 7552-7563.
    [52].Koufaki, M.; Fotopoulou, T.; Kapetanou, M.; Heropoulos, G. A.; Gonos, E. S.; Chondrogianni, N., Microwave-assisted synthesis of 3,5-disubstituted isoxazoles and evaluation of their anti-ageing activity. Eur. J. Med. Chem., 2014, 83, 508-515.
    [53].Hsu, H. C.; Hou, D. R., Reduction of 1-pyrrolyl and 1-indolyl carbamates to hemiaminals. Tetrahedron Lett., 2009, 50, 7169-7171.
    [54].McGrath, S.; Tortorici, M.; Drouin, L.; Solanki, S.; Vidler, L.; Westwood, I.; Gimeson, P.; Van Montfort, R.; Hoelder, S., Structure-Enabled Discovery of a Stapled Peptide Inhibitor to Target the Oncogenic Transcriptional Repressor TLE1. Chemistry (Weinheim an der Bergstrasse, Germany) Chem. Eur. J., 2017, 23, 9577-9584.
    [55].Jirásek, P.; Amslinger, S.; Heilmann, J., Synthesis of Natural and Non-natural Curcuminoids and Their Neuroprotective Activity against Glutamate-Induced Oxidative Stress in HT-22 Cells. J. Nat. Prod., 2014; 77, 2206-2217.
    [56].Otto, N.; Ferenc, D.; Opatz, T., A Modular Access to (±)-Tubocurine and (±)-Curine - Formal Total Synthesis of Tubocurarine. J. Org. Chem., 2017, 82, 1205-1217.
    [57].Sonobe, T.; Oisaki, K.; Kanai, M., Catalytic aerobic production of imines en route to mild, green, and concise derivatizations of amines. Chem. Sci., 2012, 3, 3249-3255.
    [58].Xu, P.; Chen, D.-S.; Xi, J.; Yao, Z.-J., Short Protecting Group-free Syntheses of Camptothecin and 10-Hydroxycamptothecin Using Cascade Methodologies. Chem. Asian J., 2015, 10, 976-981.
    [59].Ruiz, J.; Lete, E.; Sotomayor, N., Intramolecular cyclisation of functionalised heteroaryllithiums. Synthesis of novel indolizinone-based compounds. Tetrahedron, 2006, 62, 6182-6189.
    [60].Tseng, P.-W.; Yeh, S.-W.; Chou, C.-H., Syntheses and Pyrolyses of Benzofuran Analogues of α-Oxo-o-quinodimethane. A Study on Vinylcarbene−Cyclopropene Rearrangement. J. Org. Chem., 2008, 73, 3481-3485.
    [61].Martín-Matute, B.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M., Intramolecular Reactions of Alkynes with Furans and Electron Rich Arenes Catalyzed by PtCl2:  The Role of Platinum Carbenes as Intermediates. J. Am. Chem. Soc., 2003, 125, 5757-5766.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE