簡易檢索 / 詳目顯示

研究生: 蘇建元
Su, Jian-Yuan
論文名稱: 睡眠給予聽覺刺激對程序記憶增進之研究
Study of Promotion of Procedural Memory Consolidation by Auditory Stimulus during Sleep
指導教授: 梁勝富
Liang, Sheng-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 93
中文關鍵詞: 程序型記憶聽覺刺激重建學習環境快速眼動期β活性
外文關鍵詞: procedural memory, auditory stimulus, reinstate that training context, REM, Beta power activity
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 睡眠已知可以增進記憶的固化作用。一個廣泛地假說認為這是因為新進的訊息在睡眠時經過了一些再激發的歷程。
    先前研究指出經由一些特定的記憶步驟,能夠增進程序型記憶作業的學習。
    作業表現會隨著訓練而改善,並且在沒有額外的複習之下,藉著學習後的睡眠繼續進步。
    睡眠有助於程序型記憶的穩固、強化。然而,沒有研究指出如何在睡眠中再促進程序型記憶的穩固。在此,我們想探討在不同的睡眠階段,利用聽覺刺激重建學習環境,是否能在睡眠當中再促進程序型記憶的強化。
    我們設計了兩實驗。行為實驗:此實驗目的在探討訓練過程中如何呈現聽覺刺激。此實驗有三組分別是(1)有敲打就有聽覺刺激、(2)正確敲打才有聽覺刺激與(3)固定節奏方式呈現。每組實驗皆有一次的控制組測試與一次實驗組測試。
    此實驗結果發現各組訓練過程的表現並無顯著的差異。經過一晚睡眠,各組控制組後測的表現皆有顯著增進。但在實驗組後測的表現,只在組別ㄧ後測表現有顯著增進,其他兩組則無。
    睡眠實驗:此實驗目的是利用行為實驗的訓練方式與在不同睡眠重建學習環境。此實驗有三組分別是(1)聽覺刺激呈現在訓練與慢波睡眠、(2)聽覺刺激呈現在訓練與快速眼動期與(3)聽覺刺激只呈現在快速眼動期。每組實驗皆有一次的控制組測試與一次實驗組測試。
    此實驗結果發現,在組別二,實驗組後測的表現明顯好於控制組後測的表現,且實驗組的增進率也明顯好控制組的增進率。我們也發現在重建環境過程中,β活性有顯著的增強,且增強的百分比與兩次實驗增進率的差有一正相關。

    Sleep facilitates memory consolidation. A widely held model assumes that this is because newly encoded memories undergo covert reactivation during sleep.
    Learning of a procedural memory task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep.
    The sleep is helpful for consolidating procedural memory. However, no study indicates how to promote more consolidation of procedural memory during sleep. Here, we investigate that whether reinstating that training context by auditory stimulus during different sleep stage can promote the memory consolidation.
    We design two experiments. Behavior Experiment, the purpose of this experiment is to investigate that how to play the auditory stimulus during training. There are three groups in this experiment, (1) auditory stimulus in all tapping, (2) auditory stimulus in correctly tapping and (3) fixed-frequency auditory stimulus. Each group is two testing condition in which the auditory stimulus (Exp.) or vehicle (Ctrl.).
    The result of this experiment is found that the performance of the training of Ctrl. and Exp. of three groups are no significant different between groups. After a night sleep, the performance of the retest of Ctrl. of three groups all show a significant improvement. The performance of the retest of Exp. of Group 1 only shows a significant improvement, and the other two groups are not.
    Sleep Experiment, the purpose of this experiment is to use the training way of Behavior Experiment and reinstate that training context during different sleep stage. There are three groups in this experiment, (1) auditory stimulus is during training and SWS, (2) auditory stimulus is during training and REM, (3) auditory stimulus is only during REM. Each group is two testing condition in which the auditory stimulus (Exp.) or vehicle (Ctrl.).
    The result of this experiment is found that, Group 2, the performance of the retest of Exp. was better than the performance of the retest of Ctrl., and the improvement of Exp. was also better than the improvement of Ctrl. we also found that the beta power activity during reinstating that training context shows a significant enhance and the enhanced percentage show a positive correlation with the difference between improvement of Ctrl. and Exp..

    Chapter 1. Introduction 1 1.1 sleep-dependent procedural memory consolidations 3 1.1.1 Visual texture discrimination 3 1.1.2 Motor adaptation task 4 1.1.3 Motor Skill task 4 1.2 The relationships between procedural memory and sleep stages 5 1.2.1 NREM sleep and procedural memory 5 1.2.2 REM sleep and procedural memory 5 1.3 Memory reactivates in sleep 6 1.4 Memory and Brain Oscillations 7 1.5 Motivation and Object 8 1.5.1 Motivation 8 1.5.2 Objects 8 Chapter 2. Material and Methods - Behavior Experiment 9 2.1 Behavior Experiment 9 2.2 Motor-skill task 10 2.3 Performance measures 12 2.4 Auditory stimulus 12 2.5 Statistical Analysis 12 Chapter 3. Results - Behavior Experiment 13 3.1 Speed and Accuracy 13 Chapter 4. Discussion - Behavior Experiment 25 Chapter 5. Material and Methods - Sleep Experiment 26 5.1 Sleep Experiment 26 5.2 Motor-skill task 28 5.3 Performance measures 29 5.4 Auditory stimulus 29 5.5 Sleep and EEG Recordings 29 5.6 Sleep, EOG and EMG Analysis 30 5.6.1 Classification of Sleep States by EEG, EOG, EMG 30 5.6.2 Spindle density Analysis 30 5.6.3 Eye movement Analysis 31 5.6.4 Brain oscillation during reinstating on/off analysis 31 5.7 Statistical Analysis 32 Chapter 6. Results - Sleep Experiment 33 6.1 Speed and Accuracy 33 6.2 Sleep Parameter 46 6.3 Sleep EEG 54 Chapter 7. Discussion - Sleep Experiment 87 7.1 Sleep-dependent improvement 87 7.2 Sleep brain oscillation-dependent improvement 88 Chapter 8. Conclusions and Future work 89 References 90

    Alegre, M., A. Labarga, et al. (2003). "Movement-related changes in cortical oscillatory activity in ballistic, sustained and negative movements." Experimental Brain Research 148(1): 17-25.
    Baar, E., C. Baar-Eroglu, et al. (2001). "Gamma, alpha, delta, and theta oscillations govern cognitive processes." International Journal of Psychophysiology 39(2-3): 241-248.
    Bastiaansen, M. and P. Hagoort (2003). "Special issue event-induced theta responses as a window on the dynamics of memory." Cortex 39: 967-992.
    Born, J., K. Hansen, et al. (1999). "Timing the end of nocturnal sleep." Nature 397: 29-30.
    Carskadon, M. and R. Herz (2004). "Minimal olfactory perception during sleep: why odor alarms will not work for humans." Sleep 27(3): 402-405.
    Chu, S. and J. Downes (2002). "Proust nose best: Odors are better cues of autobiographical memory." Memory and Cognition 30(4): 511-518.
    Doyon, J. and H. Benali (2005). "Reorganization and plasticity in the adult brain during learning of motor skills." Current opinion in neurobiology 15(2): 161-167.
    Dudai, Y. (2004). "The neurobiology of consolidations, or, how stable is the engram?".
    Duman, F., A. Erdamar, et al. (2009). "Efficient sleep spindle detection algorithm with decision tree." Expert Systems With Applications 36(6): 9980-9985.
    Duncan, C. (1949). "The retroactive effect of electroshock on learning." Journal of Comparative and Physiological Psychology 42(1): 32-44.
    Fischer, S., M. Hallschmid, et al. (2002). "Sleep forms memory for finger skills." Proceedings of the National Academy of Sciences 99(18): 11987.
    Huber, R., M. Felice Ghilardi, et al. (2004). "Local sleep and learning." Nature 430(6995): 78-81.
    Jensen, O. and C. Tesche (2002). "Short communication frontal theta activity in humans increases with memory load in a working memory task." European Journal of Neuroscience 15: 1395-1399.
    Karrasch, M., M. Laine, et al. (2004). "Effects of normal aging on event-related desynchronization/synchronization during a memory task in humans." Neuroscience letters 366(1): 18-23.
    Kirk, I. and J. Mackay (2003). "The role of theta-range oscillations in synchronising and integrating activity in distributed mnemonic networks." Cortex 39(4-5): 993-1008.
    Klimesch, W. (1999). "EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis." Brain Research Reviews 29(2-3): 169-195.
    Klimesch, W., B. Schack, et al. (2005). "The functional significance of theta and upper alpha oscillations." Experimental Psychology (formerly" Zeitschrift fur Experimentelle Psychologie") 52(2): 99-108.
    Klimesch, W., H. Schimke, et al. (1994). "Episodic and semantic memory: an analysis in the EEG theta and alpha band." Electroencephalography and clinical neurophysiology 91(6): 428-441.
    Klimesch, W., M. Doppelmayr, et al. (1997). "Brain oscillations and human memory: EEG correlates in the upper alpha and theta band." Neuroscience letters 238(1-2): 9-12.
    Klimesch, W., M. Doppelmayr, et al. (2007). "Theta synchronization and alpha desynchronization in a memory task." Psychophysiology 34(2): 169-176.
    Kopp, F., E. Schroger, et al. (2004). "Neural networks engaged in short-term memory rehearsal are disrupted by irrelevant speech in human subjects." Neuroscience letters 354(1): 42-45.
    Krause, C. (2002). "Brain electric oscillations and cognitive processes." Experimental methods in neuropsychology: 111-130.
    Kuriyama, K., R. Stickgold, et al. (2004). "Sleep-dependent learning and motor-skill complexity." Learning & Memory 11(6): 705.
    Laureys, S., P. Peigneux, et al. (2001). "Experience-dependent changes in cerebral functional connectivity during human rapid eye movement sleep." Neuroscience 105(3): 521-525.
    Makeig, S. (1993). Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones, Naval health research center san diego ca.
    Maquet, P., S. Laureys, et al. (2000). "Experience-dependent changes in cerebral activation during human REM sleep." Nature Neuroscience 3: 831-836.
    McClelland, J., B. McNaughton, et al. (1995). "Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory." Psychological review 102(3): 419-457.
    Muller, G. and A. Pilzecker (1900). "Experimentelle beitrage zur lehre vom gedachtniss." Z. Psychol 1: 1-300.
    Pfurtscheller, G., K. Zalaudek, et al. (1998). "Event-related beta synchronization after wrist, finger and thumb movement." Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control 109(2): 154-160.
    Rasch, B., C. Buchel, et al. (2007). "Odor cues during slow-wave sleep prompt declarative memory consolidation." Science 315(5817): 1426.
    Rechtschaffen, A. and A. Kales (1968). "A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects."
    Robertson, E., A. Pascual-Leone, et al. (2004). "Awareness modifies the skill-learning benefits of sleep." Current Biology 14(3): 208-212.
    Schacter, D. and E. Tulving (1994). Memory systems 1994, MIT Press Cambridge, MA.
    Squire, L., C. Stark, et al. (2004). "The medial temporal lobe*."
    Stancak Jr, A. and G. Pfurtscheller (1996). "Event-related desynchronisation of central beta-rhythms during brisk and slow self-paced finger movements of dominant and nondominant hand." Cognitive Brain Research 4(3): 171-183.
    Stickgold, R. (1998). "Sleep: off-line memory reprocessing." Trends in Cognitive Sciences 2(12): 484-492.
    Stickgold, R., D. Whidbee, et al. (2000). "Visual discrimination task improvement: A multi-step process occurring during sleep." Journal of Cognitive Neuroscience 12(2): 246-254.
    Stickgold, R., L. James, et al. (2000). "Visual discrimination learning requires post-training sleep." Nature Neuroscience 2: 1237-1238.
    Stuart, K. and R. Conduit (2009). "Auditory inhibition of rapid eye movements and dream recall from REM sleep." Sleep 32(3): 399-408.
    Tallon-Baudry, C. (2003). "Oscillatory synchrony and human visual cognition." Journal of Physiology-Paris 97(2-3): 355-363.
    Walker, M. and R. Stickgold (2004). "Sleep-dependent learning and memory consolidation." Neuron 44(1): 121-133.
    Walker, M., T. Brakefield, et al. (2002). "Practice with Sleep Makes Perfect Sleep-Dependent Motor Skill Learning." Neuron 35(1): 205-211.
    Walker, M., T. Brakefield, et al. (2003). "Dissociable stages of human memory consolidation and reconsolidation." Nature 425(6958): 616-620.
    Ward, L. (2003). "Synchronous neural oscillations and cognitive processes." Trends in Cognitive Sciences 7(12): 553-559.
    Zelano, C. and N. Sobel (2005). "Humans as an animal model for systems-level organization of olfaction." Neuron 48(3): 431-454.

    下載圖示 校內:2013-07-14公開
    校外:2013-07-14公開
    QR CODE