| 研究生: |
曾洪浩 Tseng, Hung-Hao |
|---|---|
| 論文名稱: |
以水熱法製備氧化鎳奈米片及其於延伸式閘極場效電晶體酸鹼感測之應用研究 Hydrothermal Growth of NiO Nanosheets and Its Applications on EGFET pH Sensors |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 氧化鎳 、水熱法 、酸鹼感測器 、延伸式閘極場效電晶體 |
| 外文關鍵詞: | NiO, HTG, EGFET, pH sensors |
| 相關次數: | 點閱:102 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在利用水熱法(hydrothermal growth, HTG)進行氧化鎳(nickel oxide, NiO)奈米片(nanosheets, NSs)之成長並結合延伸式閘極場效電晶體之結構(Extended-Gate Field-Effect Transistor, EGFET)以應用於pH感測之研究,藉由NiO奈米片具備大表面積以利吸附溶液中之酸鹼離子之特質,增進元件之pH感測靈敏度。
本論文之研究工作概分為三部分,第一部分為利用水熱法製備出NiO奈米片,並藉由調變水熱製程參數觀察其外觀形貌之變化。最後透過掃描式電子顯微鏡(SEM)、能量色散X-射線光譜(X-ray energy dispersive spectroscopy, EDS)及X-光繞射(x-ray diffraction, XRD)等材料分析探討水熱製程參數及退火溫度之調變對於NiO奈米片之影響;第二部分為延伸式閘極之製備及pH量測系統之設置。結合於鈦/金(Ti/Au)導電基板上水熱法成長之NiO奈米片與EGFET之封裝製程,製備pH感測元件。pH量測系統使用Keithley 2636A作為量測機台,n-MOSFET為市售已封裝之CD4007UB,參考電極為Ag/AgCl,在量測過程中固定溫度為300 K,NiO奈米片感測面積為0.5×0.5 cm2,延伸式閘極與參考電極距離固定為2 cm;第三部分為以NiO奈米片pH感測元件進行pH量測。首先將針對感測膜表面形貌與元件製程退火溫度進行探討並觀察元件感測特性之變化。於感測膜表面形貌方面,實驗結果顯示,以水熱法製備之NiO奈米片感測特性優於濺鍍沉積製備之NiO薄膜,其中以水熱成長9小時、奈米片典型長度與厚度分別為1.5-2 "μ" m與10-40 nm之元件表現最佳。於元件製程退火溫度方面,發現以退火溫度為400℃時,具有最佳之感測特性,靈敏度為54.71 mV/pH,線性度為0.996。續以此最佳化之元件進行遲滯效應與時漂效應之探討,實驗結果顯示元件於緩衝溶液pH 7-4-7-10-7循環中之遲滯電壓為7.01 mV,於緩衝溶液pH 7中量測時漂值為0.71 mV/h,說明元件具有量測之重複性及長時間量測之穩定性。
本論文以水熱法成長NiO奈米片所製備pH感測元件,於製備上具製程簡易、製作成本低廉及大面積製作等優點,極具規模化生產潛力;於感測性能上,其奈米片表面形貌證實可有效增進感測特性,預期對於未來pH元件之開發應用將可提供助益。
Sensing electrodes based on the hydrothermal growth (HTG) of NiO nanosheets (NSs) are fabricated and their pH sensing performance in 2-12 pH buffer solutions using an extended-gate field-effect transistor (EGFET) configuration is demonstrated. Effect of surface-to-volume (SV) ratio of the prepared NiO NSs which is related to HTG parameters on sensing reponse is investigated. The sensing electrode based on NiO NSs HTG for 9 h-sample shows a high response of 54.71 mV/pH, a good linearity of 0.996, and low hysteresis voltage of 7.01 mV, which could be mainly attributed to the improved SV ratio of the NSs structure.
[1] Y. Qin, H. Kwon, M. Howlader and M. Deen, “Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: recent advances and research challenges,” RSC Advances, vol. 5, no. 85, pp. 69086-69109, 2015.
[2] L. Yin, J. Chou, W. Chung, T. Sun and S. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET,” Materials Chemistry and Physics, vol. 70, no. 1, pp. 12-16, 2001.
[3] L. Yin, J. Chou, W. Chung, T. Sun and S. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate,” Sensors and Actuators B: Chemical, vol. 71, no. 1-2, pp. 106-111, 2000.
[4] S. Li, J. Chou, T. Sun and S. Hsiung, “Study on the potentiometric glucose biosensor based on the SnO2/ITO/PET,” Biomedical Engineering: Applications, Basis and Communications, vol. 21, no. 6, pp. 411-414, 2009.
[5] D. Yates, S. Levine and T. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, pp. 1807-1818, 1974.
[6] D. Adler and J. Feinleib, “Electrical and Optical Properties of Narrow-Band Materials,” Physical Review B, vol. 2, no. 8, pp. 3112-3134, 1970.
[7] A. Kunz, “Electronic structure of NiO,” Journal of Physics C: Solid State Physics, vol. 14, no. 16, pp. L455-L460, 1981.
[8] N. Ohshima, M. Nakada and Y. Tsukamoto, “Structural and Magnetic Properties of Ni-O/Ni-Fe Bilayer Films,” Japanese Journal of Applied Physics, vol. 35, no. 2, 12, pp. L1585-L1588, 1996.
[9] S. Dudarev, G. Botton, S. Savrasov, C. Humphreys and A. Sutton, “Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study,” Physical Review B, vol. 57, no. 3, pp. 1505-1509, 1998.
[10] I. Austin and N. Mott, “Polarons in crystalline and non-crystalline materials,” Advances in Physics, vol. 50, no. 7, pp. 757-812, 2001.
[11] J. Lang, L. Kong, W. Wu, Y. Luo and L. Kang, “Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors,” Chemical Communications, no. 35, pp. 4213-4215, 2008.
[12] P. Justin, S. Meher and G. Rao, “Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis,” The Journal of Physical Chemistry C, vol. 114, no. 11, pp. 5203-5210, 2010.
[13] H. Liu, G. Wang, J. Liu, S. Qiao and H. Ahn, “Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance,” Journal of Materials Chemistry, vol. 21, no. 9, pp. 3046-3052, 2011.
[14] X. Wang, Li, Y. Zhang, S. Wang, Z. Zhang, L. Fei and Y. Qian, “High-Yield Synthesis of NiO Nanoplatelets and Their Excellent Electrochemical Performance,” Crystal Growth & Design, vol. 6, no. 9, pp. 2163-2165, 2006.
[15] T. Yu, X. Cheng, X. Zhang, L. Sui, Y. Xu, S. Gao, H. Zhao and L. Huo, “Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays,” Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11991-11999, 2015.
[16] X. Lai, G. Shen, P. Xue, B. Yan, H. Wang, P. Li, W. Xia and J. Fang, “Ordered mesoporous NiO with thin pore walls and its enhanced sensing performance for formaldehyde,” Nanoscale, vol. 7, no. 9, pp. 4005-4012, 2015.
[17] C. Zhao, J. Fu, Z. Zhang and E. Xie, “Enhanced ethanol sensing performance of porous ultrathin NiO nanosheets with neck-connected networks,” RSC Advances, vol. 3, no. 12, pp. 4018-4023, 2013.
[18] J. Vargas Garcia, E. Lazcano Ugalde, F. Hernandez Santiago and J. Hallen Lopez, “Nanostructured Nickel Oxide Films Prepared by Chemical Vapor Deposition and Their Electrochromic Properties,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 5, pp. 2703-2706, 2008.
[19] B. Sarma, R. Ray, S. Mohanty and M. Misra, “Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition,” Applied Surface Science, vol. 300, pp. 29-36, 2014.
[20] M. Hakamada, A. Moriguchi and M. Mabuchi, “Fabrication of carbon nanotube/NiOx(OH)y nanocomposite by pulsed electrodeposition for supercapacitor applications,” Journal of Power Sources, vol. 245, pp. 324-330, 2014.
[21] A. Rengaraj, Y. Haldorai, C. Kwak, S. Ahn, K. Jeon, S. Park, Y. Han and Y. Huh, “Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor,” Journal of Materials Chemistry B, vol. 3, no. 30, pp. 6301-6309, 2015.
[22] A. Sonavane, A. Inamdar, P. Shinde, H. Deshmukh, R. Patil and P. Patil, “Efficient electrochromic nickel oxide thin films by electrodeposition,” Journal of Alloys and Compounds, vol. 489, no. 2, pp. 667-673, 2010.
[23] L. Gu, Y. Wang, R. Lu, L. Guan, X. Peng and J. Sha, “Anodic electrodeposition of a porous nickel oxide–hydroxide film on passivated nickel foam for supercapacitors,” Journal of Materials Chemistry A, vol. 2, no. 20, pp. 7161-7164, 2014.
[24] Q. Jin, W. Xue, X. Li, Q. Zhu and X. Wu, “Al2O3 coating fabricated on titanium by cathodic microarc electrodeposition,” Journal of Alloys and Compounds, vol. 476, no. 1-2, pp. 356-359, 2009.
[25] S. Chou, F. Cheng and J. Chen, “Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films,” Journal of Power Sources, vol. 162, no. 1, pp. 727-734, 2006.
[26] D. Dam, X. Wang and J. Lee, “Mesoporous ITO/NiO with a core/shell structure for supercapacitors,” Nano Energy, vol. 2, no. 6, pp. 1303-1313, 2013.
[27] J. Chang, H. Kuo, I. Leu and M. Hon, “The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor,” Sensors and Actuators B: Chemical, vol. 84, no. 2-3, pp. 258-264, 2002.
[28] J. Dirksen, K. Duval and T. Ring, “NiO thin-film formaldehyde gas sensor,” Sensors and Actuators B: Chemical, vol. 80, no. 2, pp. 106-115, 2001.
[29] W. Zhang, J. Chen, L. Jiang, Y. Yu and J. Zhang, “A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes,” Microchimica Acta, vol. 168, no. 3-4, pp. 259-265, 2010.
[30] Y. Miao, J. Chen and K. Fang, “New technology for the detection of pH,” Journal of Biochemical and Biophysical Methods, vol. 63, no. 1, pp. 1-9, 2005.
[31] B. LIU, Y. SU and S. CHEN, “Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing,” International Journal of Electronics, vol. 67, no. 1, pp. 59-63, 1989.
[32] F. Lin, H. Chang, S. Hsiao, H. Chen and W. Liu, “Preparation and characterization of nickel oxide-based EGFET pH sensors,” 2015 9th International Conference on Sensing Technology (ICST), 2015.
[33] J. van der spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe,” Sensors and Actuators, vol. 4, pp. 291-298, 1983.
[34] L. Chi, J. Chou, W. Chung, T. Sun and S. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Materials Chemistry and Physics, vol. 63, no. 1, pp. 19-23, 2000.
[35] P. Bergveld, “Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements,” IEEE Transactions on Biomedical Engineering, vol. 17, no. 1, pp. 70-71, 1970.
[36] C. Fung, P. Cheung and W. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Transactions on Electron Devices, vol. 33, no. 1, pp. 8-18, 1986.
[37] P. Bergveld, “ISFET, Theory and Practice,” IEEE Sensor Conference Toronto, 2003.
[38] T. Matsuo and M. Esashi, “Methods of isfet fabrication,” Sensors and Actuators, vol. 1, pp. 77-96, 1981.
[39] R. Hunter and H. Wright, “The dependence of electrokinetic potential on concentration of electrolyte,” Journal of Colloid and Interface Science, vol. 37, no. 3, pp. 564-580, 1971.
[40] H. Liao, L. Chi, J. Chou, W. Chung, T. Sun and S. Hsiung, “Study on pHpzc and surface potential of tin oxide gate ISFET,” Materials Chemistry and Physics, vol. 59, no. 1, pp. 6-11, 1999.
[41] W. Tsai, B. Huang, P. Yang, K. Wang, C. Hsiao and H. Cheng, “Oxygen Plasma Functionalized Multiwalled Carbon Nanotube Thin Film as A pH Sensing Membrane of Extended-Gate Field-Effect Transistor,” IEEE Electron Device Letters, vol. 34, no. 10, pp. 1307-1309, 2013.
[42] J. Lewis, “Colloidal Processing of Ceramics,” Journal of the American Ceramic Society, vol. 83, no. 10, pp. 2341-2359, 2000.
[43] J. Rodríguez, M. Valenzuela, T. Poznyak, L. Lartundo and I. Chairez, “Reactivity of NiO for 2,4-D degradation with ozone: XPS studies,” Journal of Hazardous Materials, vol. 262, pp. 472-481, 2013.
[44] Y. Liao and J. Chou, “Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors,” Sensors, vol. 9, no. 4, pp. 2478-2490, 2009.
[45] N. Vieira, E. Fernandes, A. Faceto, V. Zucolotto and F. Guimarães, “Nanostructured polyaniline thin films as pH sensing membranes in FET-based devices,” Sensors and Actuators B: Chemical, vol. 160, no. 1, pp. 312-317, 2011.
[46] J. Chou and Y. Wang, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method,” Sensors and Actuators B: Chemical, vol. 86, no. 1, pp. 58-62, 2002.
[47] Y. Liao and J. Chou, “Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method,” Materials Chemistry and Physics, vol. 114, no. 2-3, pp. 542-548, 2009.
[48] C. Lue, I. Wang, C. Huang, Y. Shiao, H. Wang, C. Yang, S. Hsu, C. Chang, W. Wang and C. Lai, “pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process,” Microelectronics Reliability, vol. 52, no. 8, pp. 1651-1654, 2012.
[49] A. Das, D. Ko, C. Chen, L. Chang, C. Lai, F. Chu, L. Chow and R. Lin, “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor,” Sensors and Actuators B: Chemical, vol. 205, pp. 199-205, 2014.
[50] H. Li, C. Yang, C. Kei, C. Su, W. Dai, J. Tseng, P. Yang, J. Chou and H. Cheng, “Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor,” Thin Solid Films, vol. 529, pp. 173-176, 2013.
[51] J. Li, S. Chang, S. Chang and T. Tsai, “Sensitivity of EGFET pH Sensors with TiO2 Nanowires,” ECS Solid State Letters, vol. 3, no. 10, pp. P123-P126, 2014.
[52] J. Lin, B. Huang and Y. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors,” Sensors and Actuators B: Chemical, vol. 184, pp. 27-32, 2013.
[53] A. Rosli, S. Shariffudin, Z. Awang and S. Herman, “Deposition temperature dependence of ZnO nanostructures growth using TCVD for EGFET pH sensor,” 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 2017.
[54] L. Bousse, S. Mostarshed, B. van der Schoot and N. de Rooij, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators,” Sensors and Actuators B: Chemical, vol. 17, no. 2, pp. 157-164, 1994.
[55] S. Mattigod, D. Rai, A. Felmy and L. Rao, “Solubility and solubility product of crystalline Ni(OH)2,” Journal of Solution Chemistry, vol. 26, no. 4, pp. 391-403, 1997.