| 研究生: |
楊勝仲 Yang, Sheng-Chung |
|---|---|
| 論文名稱: |
二氧化碳雪花噴流在精密洗淨與致冷應用之研究 Study of the Carbon Dioxide Snow Jet on Precision Cleaning and Cryogenics Applications |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 二氧化碳雪花 、乾式洗淨 、挫曲誘致脫層 、溫室氣體 、鎂合金熔湯保護 、壓鑄 |
| 外文關鍵詞: | carbon dioxide snow, dry cleaning, buckling-driven delamination, greenhouse gases, magnesium melt protection, die casting |
| 相關次數: | 點閱:171 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳雪花,係由液態二氧化碳快速蒸發而形成之固態微粒,由於它具有天然、無色無味、化學穩定性佳、環保、冷卻效率高之無害冷凍劑之特性,而在許多領域都有應用實例,例如冷凍、冷卻、醫療處理、洗淨及其他應用。一般而言,精密洗淨與致冷應用是二氧化碳雪花被考量而採用的兩項主要功效。在本文中,吾人完成了二氧化碳雪花噴流在精密洗淨與致冷工程應用的研究與討論。首先,運用田口品質工程手法,探討脈衝式二氧化碳雪花噴流去除互補式金屬氧化物半導體(complementary metal oxide semiconductor, CMOS)影像感測器表面污染微粒之噴洗製程最佳化。研究結果顯示,在95%的信心水準下,對表面污染微粒殘留率深具影響力的二氧化碳雪花噴洗系統中,獲得最佳化參數為15度的噴射角度、40 mm的噴洗距離、0.3 mm的節流孔與50 ms噴洗基準時間。在此研究中,吾人特別設計了一種新穎的脈衝式二氧化碳雪花噴流,透過設定之脈衝激發訊號,有效解決二氧化碳雪花噴流對被噴洗物表面所造成之低溫效應影響。在使用脈衝式二氧化碳雪花噴流對基板表面的噴洗測試中,量測到有10.6°C的平均表面溫度之差異,如此一來,可以減少(甚至不需要)對伴隨熱空氣噴吹的需求量,亦同時減少二氧化碳雪花的消耗量。經此最佳化參數設計之後,此噴洗系統對於CMOS影像感測器中大於2微米的污染微粒皆可有效清除,且污染微粒之平均殘留率亦可被有效地控制。此外,在LCD玻璃基板PI膜刷磨配向後之殘屑移除實驗中,應用吾人設計之線型二氧化碳雪花噴嘴,400 × 370 mm 二代玻璃基板以機械設備刷磨配向後之殘屑移除率可達99.08%以上。
其次,吾人提出了在應用電鑄模製作微流道裝置的製程中,一種新穎又環保、便宜且無破壞性之移除殘留SU-8負型光阻劑方法。此方法包含兩個主要步驟為:先產生脫層,再撐開脫層。具體而言係先以可控式的方式產生熱脫層,再輔以有效率的高速氣膠噴流撐開脫層。實驗顯示,在升溫熱脫層實驗中,可明顯觀察到預期的SU-8脫層產生。由形態學理觀察分析,這些熱挫曲誘致脫層屬於直線側邊及邊界起始型。在噴嘴出口10 mm處,二氧化碳雪花噴流效應包含舉升力Fdp、牽引力Fd及衝擊力Fi亦分別予以計算分析及實驗量測。由舉升力、牽引力及衝擊力的分析結果顯示,舉升力比牽引力及衝擊力大10倍以上,故二氧化碳雪花噴流之噴擊效應主決於來自舉升力之撐開效果及舉升力之大小。而實驗及分析結果顯示,能提供最佳舉升力的二氧化碳雪花噴流之噴射距離為6-10 mm。在此研究中,吾人提出之新穎物理性方法:結合熱脫層及二氧化碳雪花噴流,確實能有效地移除深寬比1:1之殘留SU-8。
最後,吾人將二氧化碳噴流應用於鎂及鎂合金之熔湯保護,並設計出一種新式高稠密二氧化碳雪花噴嘴,相較於以往的方法,此噴嘴系統可以對鎂合金之熔湯提供更高效率的冷卻及遮蔽保護效果。一開始複製了Bach實驗用的噴嘴,並用此噴嘴在一3公斤容量的小熔爐中,進行AZ91D鎂合金及純鎂熔湯保護實驗,以驗證二氧化碳噴流方法之保護性。然而,在使用Bach的噴嘴於第二階段的放大實驗初期,馬上浮現二氧化碳消耗量過高的問題。因此,為了讓噴嘴製造更多的乾冰,吾人更進一步設計了這個改良式高稠密二氧化碳雪花噴嘴,並提出最佳化的噴嘴觸發模式,因而提升了對乾冰的操控效率。最後,應用改良式高稠密二氧化碳雪花噴嘴,發展出一套特製的鎂合金熔湯保護系統,並完成了準量產級的200公斤鎂合金熔爐測試。此保護系統在AM60鎂合金熔湯實驗中,在可以完整保護熔湯的前提下,展現了每小時1.2公斤二氧化碳的低消耗量優異性能,而相較於使用原先非高稠密二氧化碳雪花之系統,本系統的運作成本只有0.55美元/小時。吾人所提出之改良式二氧化碳雪花噴嘴保護系統,具有以下三大優點:冷卻效率增進10倍,延長電磁閥的使用壽命,以及因使用不含硫的氣體而減少熔爐之維修需求。
Carbon dioxide (CO2) snow, the solid formed by rapid evaporation of liquid CO2, is generally applied in numerous fields such as refrigeration, cooling, medical treatment, cleaning, and others due to the characteristics of natural, odorless and tasteless, chemically stable, environmentally friendly, and harmless coolant with a high cooling performance. Generally, the precision cleaning and cryogenics are the major two considered functions to make use of a CO2 snow jet. In this study, researches on precision cleaning and cryogenics engineering applications by the CO2 snow jet are carried out and discussed. First, I demonstrated the optimization of a pulsed CO2 snow jet system for the removal of particles on the surface of complementary metal oxide semiconductor (CMOS) image sensors by using the Taguchi method. The parameters of the CO2 snow cleaning system, which can have an influence on the residue rate of particles, were optimized, resulting in optimal values of 15 degree incident angle, 40 mm cleaning distance, 0.30 mm orifice size, and a 50 millisecond time-base with above 95% confidence. A novel pulsed CO2 snow jet, triggered by ordered pulsing signals, was introduced to the experiments for solving the cryogenic effect on the surface. The pulsed CO2 snow jet gained a total of 10.6°C difference in average temperature on the substrate surface. So, I achieve not only less (even none at all) hot air consumption but also less CO2 consumption. Due to the optimization, the average residual particle rate can be controlled, and all particles larger than 2 µm will be removed. In the G2 glass substrates cleaning tests, the substrate was cleaned by a new proposed spread CO2 snow jet nozzle with 100 mm width. The particle removal rate of the spread denser CO2 snow jet is up to 99.08%.
Secondly, a novel, environmentally friendly, inexpensive, and non-destructive method for removing SU-8 after being an electroplating mold in microfluidic fabrication is demonstrated in this study. A controllable thermal delaminating method, assisted by an efficient high speed aerosol jet consisting of two major steps, delamination followed by removal by lifting, is presented. Results show that the predictable delaminations were observed in the thermal process tests. The morphology of the thermal buckling-driven delamination was edge initiated and straight sided. The effects of the CO2 snow jet at a distance of 10 mm from the nozzle exit as well as the lift force Fdp, drag force Fd, and impact force Fi were determined. Based on the analysis of the lift, drag, and impact forces, the lifting force dominates the effects of the CO2 snow jet and is tens of times larger than the others. Experiments and analyses showed that the best distance for the CO2 snow jet to the nozzle exit was 6-10 mm. Using the proposed method, the SU-8 photoresist with aspect ratio 1:1 was the delaminated and removed.
Finally, I developed and evaluated a highly efficient method for protecting magnesium melts by cooling and shielding the magnesium melt with CO2 snow using a newly modified technique to achieve denser CO2 snow than competing methods. Experiments, using a replicate CO2 snow nozzle in Bach’s study, were conducted for protection of the AZ91D alloy and pure magnesium in a 3-kg furnace to identify the protectiveness. The issue of CO2 consumption was immediately apparent at the beginning of the phase-two tests using two Bach’s nozzles. Hence, the modified denser CO2 snow nozzle was designed and optimized to generate more dry ice. The optimized trigger mode to improve the efficiency of the dry ice manipulation was also proposed. Finally, a specialized pilot run of the protective system with the proposed denser CO2 snow technique for a 200-kg melting furnace was developed and tested. This system had an excellent performance with a low CO2 consumption of 1.2 kg/h for the AM60 magnesium alloy and demonstrated a quite low running cost of 0.55 USD/h compared with a non-denser CO2 snow system. The proposed modified snow nozzle presents three major advantages: an improved cooling efficiency by almost 10 times, a longer lifetime for the solenoid valve, and a reduced need for furnace maintenance as a result of the sulfur-free operation.
[1] C. Thilorier, “Solidification de l’acide carbonique,” Comptes rendus, 1, p. 194, 1834.
[2] J. K. Heyl and W. H. Scheikert, “Appartus for sub-zero treatment of metals,” U. S. Patent No. 2,742,176, 1956.
[3] R. M. Leliaert, “Method and means for deflashing or trimming molder rubber parts,” U. S. Patent No. Re.25,554, 1964.
[4] E. Uhlmann, and M. Krieg, “Shot peening with dry ice,” Proc. of Int. Conf. Shot Peen., Paris France, pp. 197-201, Sep. 2005.
[5] G. Spur, E. Uhlmann, and F. Elbing, “Dryice blasting for cleaning: process, optimization and application,” Wear, 233-235, pp. 402-411, 1999.
[6] S. Stratford, “Dry ice blasting for paint stripping and surface preparation,” Met. Finish., 98, pp. 493-499, 2000.
[7] C. Otto, S. Zahn, F. Rost, P. Zahn, D. Jaros, and H. Rohm, “Physical methods for cleaning and disinfection of surfaces,” Food Eng. Rev., 3, pp. 171-188, 2011.
[8] Y. H. Liu, “Analysis of production process of fine dry ice particles and application for surface cleaning,” Ph.D. thesis, Kyoto University, Japan, 2012.
[9] Y. H. Liu, D. Hirama, and S. Matsusaka, “Particle removal process during application of impinging dry ice jet,” Powder Technol., 217, pp. 607-613, 2012.
[10] W. Zhou, M. Liu, S. Liu, M. Peng, J. Yu, and C. Zhou, “On the mechanism of insulator cleaning using dry ice,” IEEE Trans. Dielectr. Electr. Insul., 19, pp. 1715-1722, 2012.
[11] W. Pusey, “The use of carbon dioxide snow in the treatment of nevi and other lesions of the skin,” J. Am. Med. Assoc., 49, pp. 1354-1356, 1907.
[12] E. R. Morton, “The use of carbon dioxide in dermatology,” Brit. Med. Jour., 1910.
[13] J. Hall-Edwards, “The therapeutic effects of carbon dioxide snow. Methods of collecting and applying it,” Lancet, 178, pp. 87-90, 1911.
[14] I. Berenblum, “Tumour-formation following freezing with carbon dioxide snow,” Br. J. Exp. Pathol., 10, pp. 179–184, 1929.
[15] I. Berenblum, “Further Investigations on the Induction of tumours with carbon dioxide snow,” Br. J. Exp. Pathol., 11, pp. 208–211, 1930.
[16] G. Weitzner, “The treatment of endocervicitis with carbon dioxide snow (dry ice),” The Am. J. Surg., 48, pp. 620-624, 1940.
[17] M. L. Bobrow, A. Goldbaum, and V. Short, “Treatment of cervicitis by the carbon-dioxide-snow cauterization method,” Obstet. & Gynecol., 18, pp. 726-728, 1961.
[18] Y. Hata, K. Matsuka, O. Ito, H. Matsuda, H. Furuichi, N. Ishizu, and A Konstantinos, “Treatment of nevus Ota: combined skin abrasion and carbon dioxide snow method,” Plast. Reconstr. Surg., 97, pp. 544-554, 1996.
[19] S. A. Hoenig, “Cleaning surface with dry ice,” Compress. Air Mag., 8, pp. 22-24, 1986.
[20] S. A. Hoenig, “Dry ice snow as a cleaning media for hybrids and integrated circuits,” Hybrids Circuit Technol., 7, pp. 34-37, 1990.
[21] R. Sherman and W. Whitlock, “The removal of hydrocarbons and silicone grease stains from silicon wafers,” J. Vac. Sci. Technol. B, 8, pp. 563-567, 1990.
[22] R. Sherman, J. Grob, and W. Whitlock, “Dry surface cleaning using CO2 snow,” J. Vac. Sci. Technol. B, 8, pp. 1970-1977, 1991.
[23] M. M. Hills, “Carbon dioxide jet spray cleaning of molecular contaminants,” J. Vac. Sci. Technol. A, 13(1), pp. 30-34, 1995.
[24] M. M. Hills, “Mechanism of surface charging during CO2 jet spray cleaning,” J. Vac. Sci. Technol. A, 13(2), pp. 412-420, 1995.
[25] M. Soltani and G. Ahmadi, “On particle adhesion and removal mechanisms in turbulent flows,” J. Adhes. Sci. Technol., 8, pp. 763-785, 1994.
[26] C. Toscano and G. Ahmadi, “Particle removal mechanisms in cryogenic surface cleaning,” J. Adhesion, 79, pp. 175-201, 2003.
[27] S. Banerjee and A. Campbell, Principles and mechanisms of sub-micrometer particle removal by CO2 cryogenic technique, J. Adhes. Sci. Technol., 19, pp. 739-751, 2005.
[28] P. Kim and J. Seok, “Dynamic modelling and simulation of a cryogenic carbon dioxide cleaning process,” Proc. IMechE Vol. 224 Part E: J. Process Mech. Eng., pp. 213-221, Nov. 2010.
[29] R. Sherman, “Carbon dioxide snow cleaning,” Parti. Sci. Tech. 25, pp. 37-57, 2007.
[30] D. Proch, D. Reschke, B.Günther, G. Müller, and D. Werner, “Dry ice cleaning for SRF applications,” Proc. The 10th Workshop on RF Supercon., Tsukuba Japan, Sep. 6-11, pp. 463-466, 2001.
[31] D. Reschke, A. Brinkmann, D. Werner, and G. Müller, “First experience with dry-ice cleaning on SRF cavities,” Proc. LINAC 2004, Lübeck, Germany, pp. 776-778, 2004.
[32] D. Reschke, A. Brinkmann, K. Floettmann, D. Klinke, J. Ziegler, D. Werner, R. Grimme, and Ch. Zorn, “Dry-ice cleaning: The most effective cleaning process for SRF cavities?,” Proc. of SRF2007, Peking Univ., Beijing, China, pp. 239-242, 2007.
[33] A. Dangwal, G. Muller, D. Reschke, K. Floettmann, and X. Singer, “Effective removal of field-emitting sites from metallic surfaces by dry ice cleaning,” J. Appl. Phys., 102, pp. 044903-044903-7, 2007.
[34] X. Guo, L. Wang, and Y. P. Jing, “Carbon dioxide snow jet cleaning technology,” Micronanoelectron. Technol., 49, pp. 258-262, 2012.
[35] W. V. Brandt, “Cleaning of photomask substrates using CO2 Snow,” Proc. SPIE 4562, 21st Annu. BACUS Symp. Photomask Technol., Monterey, CA, USA, pp. 600-608, Oct. 2001.
[36] N. Wang, J. D. Zimmerman, X. R. Tong, X. Xiao, J. S. Yu, and S. R. Forrest, “Snow cleaning of substrates increases yield of large-area organic photovoltaics,” Appl. Phys. Lett., 101, pp. 133901-133901-4, 2012.
[37] M. E. Zorn, D. T. Tompkins, W. A. Zeltner, M. A. Anderson, and J. T. Etter, “In-line catalytic purification of carbon dioxide used in precision cleaning applications,” Ind. Eng. Chem. Res., 51, pp. 2882–2887, 2012.
[38] M. Y. Kang, H. W. Jeong, J. Kim, J. W. Lee, and J. Jang, “Removal of biofilms using carbon dioxide aerosols,” J. Aerosol Sci., 41, pp. 1044-1051, 2010.
[39] Y. J. Shen, T. C. Lin, and M. R. Wang, “Production of Carbon Dioxide Snow by Flash-Atomization for Material Cleaning Process,” Adv. Mat. Research, 569, pp. 282-285, 2012.
[40] E. Uhlmann, R. Hollan, R. Veit, and A. E. Mernissi, “A laser assisted dry Ice blasting approach for surface cleaning,” Proc. of LCE2006, Leuven, pp. 471-475, Mar. 2006.
[41] D. J. Morris, “Cleaning of diamond nanoindentation probes with oxygen plasma and carbon dioxide snow,” Rev. Sci. Instrum., 80, p. 126102-1, 2009.
[42] C. Osborn, “Precision cleaning is a quality concern,” Manuf. Eng., 131, p. 112, 2003.
[43] SEMATECH, International Technology Roadmap for Semiconductors, 2005.
[44] D. V. Shishkin, E. S. Geskin, and B. Goldenberg, “Application of ice particles for precision cleaning of sensitive surface,” J. Electron. Packaging, 124, pp. 355-361, 2002.
[45] G. L. Weibel and C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing,” Microelectron. Eng., 65, pp. 145-152, 2003.
[46] K. Lee, N. LaBianca, S. Rishton, and S. Zohlgharnain, “Micromachining applications for a high resolution ultra-thick photoresist,” J. Vac. Sci. Technol. B, 13, pp. 3012-3016, 1995.
[47] H. Lorenz, M. Despont, M. Fahrni, N. LaBianca, P. Vettiger, and P. Renaud, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng., 7, pp. 121-124, 1997.
[48] R. Yang, J. Jiang, W. J. Meng, and W. Wang, “Numerical simulation and fabrication of microscale, multilevel, tapered mold inserts using UV-Lithographie, Galvanoformung, Abformung (LIGA) technology,” Microsyst. Technol., 12, pp. 545-553, 2006.
[49] S. J. Kim, H. Yang, K. Kim, Y. T. Lim, and H. B. Pyo, “Study of SU-8 to make a Ni master-mold: Adhesion, sidewall profile, and removal,” Electrophoresis, 27, pp. 3284-3296, 2006.
[50] P. M. Dentinger, W. M. Clift, and S. H. Goods, “Removal of SU-8 photoresist for thick film applications,” Microelectron. Eng., 61-62, pp. 993-1000, 2002.
[51] M. K. Ghantasala, J. P. Hayes, E. C. Harvey, and D. K. Sood, “Patterning, electroplating and removal of SU-8 moulds by excimer laser micromachining,” J. Micromech. Microeng., 11, pp. 133-139, 2001.
[52] M. W. Moon, H. M. Jensen, J. W. Hutchinson, K. H. Oh, and A. G. Evans, “The characterization of telephone cord buckling of compressed thin films on substrates,” J. Mech. Phys. Solids, 50, pp. 2355-2377, 2002.
[53] C. Coupeau, P. Goudeau, L. Belliard, M. George, N. Tamura, F. Cleymand, J. Colin, B. Perrin, and J. Grilhe, “Evidence of plastic damage in thin films around buckling structures,” Thin Solid Films, 469-470, pp. 221-226, 2004.
[54] F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, and J. G. Hou, “Buckle delamination of textured TiO2 thin films on mica,” Thin Solid Films, 489, pp. 221-228, 2005.
[55] A. A. Abdallah, D. Kozodaev, P. C. P. Bouten, J. M. J. den Toonder, U. S. Schubert, and G. de With, “Buckle morphology of compressed inorganic thin layers on a polymer substrate,” Thin Solid Films, 503, pp. 167-176, 2006.
[56] B. L. Mordike and T. Ebert, “Magnesium properties—applications—potential,” Mater. Sci. Eng. A., 302, pp. 37-45, 2001.
[57] H. A. Reimers, “Method for inhibiting the oxidation of readily oxidizable metals,” US Patent, No. 1,972,317, 1934.
[58] J. W. Fruehling, “Protective atmospheres for molten magnesium,” Ph.D. thesis, University of Michigan, Michigan. U.S. 1970.
[59] B. Palmer, “Good practice guidance and uncertainty management in national greenhouse gas inventories, in: SF6 emissions from magnesium production,” IPCC, Intergovernmental Panel on Climate Change, Geneva, Switzerland, pp. 3.48-3.52, 2000.
[60] S. Bartos, J. Marks, R. Kantamaneni, and C. Laush, “Measured SF6 emissions from magnesium die casting operations,” The 132nd TMS Annual Meeting, San Diego, pp. 1-5, Mar. 2003.
[61] J. E. Hillis, “The international program to identify alternatives to SF6 for magnesium melt protection,” Int. Conf. SF6 Environ., San Diego, pp. 1-11, Nov. 2002.
[62] S. Bartos, L. Curtis, J. Scharfenberg, and R. Kantamaneni, “Reducing greenhouse gas emissions from magnesium die casting,” J. Clean. Prod., 15, pp. 979-987, 2007.
[63] B. Zhang, Z. H. Wang, J. H. Yin, and L. X. Su, “CO2 emission reduction within Chinese iron & steel industry: practices, determinants and performance,” J. Clean. Prod., 33, pp. 167-178, 2012.
[64] K. Vatopoulos and E. Tzimas, “Assessment of CO2 capture technologies in cement manufacturing process,” J. Clean. Prod., 32, pp. 251-261, 2012.
[65] T. Harkin, A. Hoadley, and B. Hooper, “Optimisation of power stations with carbon capture plants – the trade-off between costs and net power,” J. Clean. Prod., 34, pp. 98-109, 2012.
[66] K. Matus, X. Xiao, and J. B. Zimmerman, “Green chemistry and green engineering in China: drivers, policies and barriers to innovation,” J. Clean. Prod., 32, pp. 193-203, 2012.
[67] G. Pettersen, E. Øvrelid, G. Tranell, J. Fenstad, and H. Gjestland, “Characterisation of the surface films formed on molten magnesium in different protective atmospheres,” Mater. Sci. Eng. A., 332, pp. 258-294, 2002.
[68] S. P. Cashion, N. J. Ricketts, and P. C. Hayes, “The mechanism of protection of molten magnesium by cover gas mixtures containing sulphur hexafluoride,” J. Light Met., 2, pp. 43-47, 2002.
[69] C. Zheng, B. R. Qin, and X. B. Lou, “A study on gas protection control system of magnesium alloy melt,” ASME eBooks, doi://dx.doi.org/10.1115/1.859544.paper60, pp. 383-388, 2010.
[70] F. Gao, Z. R. Nie, Z. H. Wang, X. Z. Gong, and T. Y. Zuo, “A research on energy-saving and environmental impact of primary magnesium and magnesium alloy production in China,” Mater. Sci. Forum, 685, pp. 152-160, 2011.
[71] Y. W. Zeng, L. M. Peng, X. M. Mao, X. Q. Zeng, and W. J. Ding, “A new low GWP protective atmosphere containing HFC-152a for molten magnesium against ignition,” Mater. Sci. Forum, 488-489, pp. 73-76, 2005.
[72] S. M. Xiong and X. F. Wang, “Protection behavior of fluorine-containing cover gases on molten magnesium alloys,” Trans. Nonferr. Met. Soc. China, 20, pp. 1228-1234, 2010.
[73] X. F. Wang and S. M. Xiong, “Protection behavior of SO2-containing cover gases to molten magnesium alloys,” Trans. Nonferr. Met. Soc. China, 21, pp. 807-813, 2011.
[74] J. Subramanian, K. C. Guan, J. Kuma, and M. Gupta, “Feasibility study on utilizing carbon dioxide during the processing of Mg–Al alloys,” J. Mater. Process. Technol., 211, pp. 1416-1422, 2011.
[75] F. W. Bach, A. Karger, and Ch. Pelz, “Environmental friendly protection system for molten magnesium,” Proc. 6th Int. Conf. Magnes. Alloy. and Their Appl., Wolfsburg, pp. 1001-1005, 2003.
[76] A. Karger, F. W. Bach, and Ch. Pelz, “Protective system for magnesium melt,” Mater. Sci. Forum, 488-489, pp. 85-88, 2005.
[77] F. W. Bach, A. Karger, Ch. Pelz, and M. Schaper, “Use of CO2-snow for protecting molten magnesium from oxidation,” Proc.: Magnes. Technol. 2005, San Francisco, pp. 3-6, Feb. 2005.
[78] P. Biedenkopf, A. Karger, M. Laukötter, and W. Schneider, “Protecting liquid Mg by solid CO2: New ways to avoid SF6 and SO2,” Proc.: Magnes. Technol. 2005, San Francisco, pp. 39-42, Feb. 2005.
[79] P. E. Lewis, G. Ahmadi, A. G. Tannous, K. Makhamreh, and K. H. Compton, “Apparatus for cleaning surfaces substantially free of contaminants,” U. S. Patent No. 6,543,426, 2003.
[80] G. Ahmadi, P. E. Lewis, A. G. Tannous, K. Makhamreh, and K. H. Compton, “Methods for cleaning surfaces substantially free of contaminants utilizing filtered carbon dioxide,” U. S. Patent No. 6,719,613, 2004.
[81] R. Sherman and P. Adams, “Carbon dioxide snow cleaning – the next generation of clean,” in Precision Cleaning ’95 Proc., Chicago, IL. USA, pp. 271-300, May 1995.
[82] J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials,” Adv. Appl. Mech., 29, pp. 63-191, 1992.
[83] K. Kim, E. Nilsen, T. Huang, A. Kim, M. Ellis, G. Skidmore, and J. B. Lee, “Metallic microgripper with SU-8 adaptor as end-effectors for heterogeneous micro/nano assembly applications,” Microsyst. Technol., 10, pp. 689-693, 2004.
[84] R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micromech. Microeng., 13, pp. 80-88, 2003.
[85] W. Dai, K. Lian, and W. Wang, “A quantitative study on the adhesion property of cured SU-8 in various metallic surfaces,” Microsyst. Technol., 11, pp. 526-534, 2005.