| 研究生: |
蔡明育 Tsai, Ming-Yu |
|---|---|
| 論文名稱: |
卡車尾端角落噴嘴氣流對減少阻力的研究 The Study of Using Corner Nozzle Flow for Truck Drag Reduction |
| 指導教授: |
陳世雄
Chen, Shih-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 卡車 、空氣阻力 、減阻 、噴嘴 、風洞 、渦流 |
| 外文關鍵詞: | wind tunnel, vortex, truck, aerodynamic drag, drag reduction, nozzle |
| 相關次數: | 點閱:70 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於現在石油價格不斷地上漲與環保意識的興起,因此必須要逐漸減少能源的消耗。在交通運輸方面,負責運輸貨物的卡車消耗了交通運輸中相當比例的能源。但卡車因功能上的限制,造成一般的外型較不流線,使得卡車相較於一般客車有著更大的空氣阻力係數。本研究的方向是針對卡車的空氣阻力著手,藉由減少卡車的空氣阻力進而減少能源的消耗。關於卡車的空氣阻力,有很大一部分是由車尾低壓造成的。車尾低壓是由於在卡車後方的流場分離,此流場分離形成了較大的渦流與較低的壓力,因而產生較大的阻力。本研究的減阻方式是在車尾的兩側角落裝設二維噴嘴,藉由此方式來改善卡車後方的流場。
本研究是運用風洞實驗的方式,來量測一具 1/8 縮尺比例的重型卡車模型之空氣阻力。並藉由改變二維噴嘴的導流角度與噴嘴出入口面積比的方式來比較不同實驗參數時的空氣阻力,以此來探討導流角度與噴嘴出入口面積比對減阻效果的影響。經由一系列的實驗跟比較的結果發現,在低雷諾數的實驗條件下,當導流的角度大約在45度到60度之間會有較佳的減阻效果,且漸擴型噴嘴其減阻效果會優於漸縮型噴嘴。
In recent years, the oil price is getting higher and higher. People are looking for vehicles with better energy efficiency and lower fuel consumption. Among all types of vehicles, the aerodynamic drag of trucks is significantly higher than that of other passenger vehicles because of their shapes are limited by their functions. The purpose of this research is to study the reduction of truck’s fuel consumption by aerodynamic drag reduction. To achieve this, this research focuses on the improvement of the low pressure region at truck rear end by using 2-dimensional nozzles installed at the rear end corners. The presence of the nozzle flow is to change the vortex and flow separation at truck end, so that the aerodynamic drag is reduced. To verify the drag reduction efficiency of this device, the corner nozzles are installed on a 1/8 scale heavy truck model. Wind tunnel experiments were performed to measure the drags. Variables of flow turning angle and the area ratio of the nozzles were studied to identify the effectiveness of drag reduction. The results show that the highest drag reduction efficiency is achieved in divergent nozzle with turning angle between 45 to 60 degrees at low Reynolds numbers.
[1] FreeCharts, http://FreeCharts.com/, Dec. 2006
[2] U.S. Department of Energy, http://www.doe.gov, Dec. 2002.
[3] U.S. Department of Energy, Energy Information Administration, http://www.eia.doe.gov/oiaf/aeo, Dec. 2002.
[4] U.S. Department of Energy, Oak Ridge National Laboratory, http://www.ornl.gov, Dec. 2002.
[5] Wood, R. M., “Impact of Advanced Aerodynamic Technology on Transportation Energy Consumption,” SAE transactions, vol. 113, number 6, pp. 854-874, 2004.
[6] Wood, R. M., and Bauer, S. X. S., “Simple and Low-Cost Aerodynamic Drag Reduction Devices for Tractor-Trailer Trucks,” SAE transactions, vol. 112, number 2, pp. 143-160, 2003.
[7] McCallen, R., Couch, R., Hsu, J., Browand, F., Hammache, M., Loenard, A., Brady, M., Salari, K., Rutledtge, W., Ross, J., Storms, B., Heineck, J. T., Driver, D., Bell, J., and Zilliac, G., “Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8) ,” SAE Government Industry Meeting, Washington, April 26-28, 1999.
[8] Rylski, S., “Road Vehicle Aerodynamics,” second edition, Pentech Press, UK, 1984.
[9] Hucho, W. H., “Aerodynamics of Road Vehicles,” Butterworth- Heinemann, UK, 1987.
[10] Salari, K., “Heavy Vehicle Drag Reduction Devices: Computational Evaluation & Design,” DOE Heavy Vehicle Systems Review, April 18-20, 2006.
[11] Berta, C., and Bonis, B., “Experimental Research of Ideal Aerodynamic Characteristics for Industrial Vehicle,” SAE Paper 801402, 1980.
[12] Gtz, H.,“Die Aerodynamik des Nutzfahrzeuges-Massnahmen zur Kraftstoffeinsparung,” Fortschr.-Berichte der VDI-Zeitschriften, Series 12, No. 31, 1977.
[13] Modi, V. J., Hill, S. S., and Yokomizo, T., “ Drag Reduction of Trucks Through Boundary-Layer Control,” Journal of Wind Engineering and Industrial Aerodynamics, Volumes 54-55, pp. 583-594, 1995.
[14] Hucho, W. H., and Emmelmann, H. J., “Aerodynamishe Formoptimierung ein Weg zur Steigerung der Wirtschaftlicheit von Nutzfahrzeugen , ” Fortsch.-Berichte der VDI-Zeitschriften, Series 12, No. 31, 1977.
[15] Bearman, P. W., “Investigation of the Flow Behind a Two-Dimensional Model with Blunt Trailing Edge and Fitted with Splitter Plates,” J. Fluid Mechanics, Vol. 21, pp. 241-255, 1965.
[16] Bearman, P. W., “Investigation into the Effects of Base Bleed on the Flow Behind a Two - Dimensional Model with a Blunt Trailing Edge,” AGARD Conf. Proc. No. 4, Separated Flows, Part 2, pp. 479-507, 1966.
[17] Storms, B. L., Satran, D. R., Heineck, J. T., and Stephen, M. W., “A Study of Reynolds Number Effects and Drag-Reduction Concepts on a Generic Tractor-Trailer,” AIAA paper no. 2251, 2004.
[18] Kruppa, E. W., “A Wind Tunnel Investigation of the Kasper Vortex Concept,” AIAA paper no.77-310, Jan., 1977.
[19] Munshi, S. R., Modi, V. J., and Yokomizo, T., “Fluid Dynamics of Flat Plates and Rectangular Prisms in the Presence of Moving Surface Boundary-Layer Control, ” Journal of Wind Engineering and Industrial Aerodynamics, Volume 79, pp. 37-60, 1999.
[20] Modi, V. J. and Deshpande, V. S., “Aerodynamics of a Building with Momentum Injection,” AIAA paper no. 2456, 2001.
[21] Englar, R. J., and Applegate, C. A., “Circulation Control- A Bibliography of DTNSRDC Research and Selected Outside References (Jan 1969 to Dec 1983),” David Taylor Naval Ship Research and Development Center Report 84/052, Carderock , MD, Sept., 1984.
[22] Engler, R. J., “Development of Pneumatic Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling and Safety of Heavy Vehicles,” SAE Government/Industry Meeting, Washington, May 14-16, 2001.
[23] Mathieu, R., Patrick, G., and Azeddine, K., “Analysis and Control of the Near-Wake Flow Over a Square-Back Geometry,” AIAA paper no. 3336, 2006.
[24] Bauer, S., and Wood, R., “Base Passive Porosity for Drag Reduction, ” United States Patent 6,286,892, Sept. 11, 2001.
[25] Ashill, P. R., Fulker, J. L., and Hackett, K. C., “Studies of Flows Induced by Sub Boundary Layer Vortex Generators (SBVGs),” AIAA paper no. 14121, 2002.
[26] White, F. M., “Viscous Fluid Flow,” McGraw-Hill Education, Singapore, 2006.
[27] Kim, K. C., Ji, H. S., and Seong, S. H., “Flow Structure Around a 3-D Rectangular Prism in a Turbulent Boundary Layers,” Journal of Wind Engineering and Industrial Aerodynamics, November, 2002.
[28] 林國楨,“貨車導風板風阻對油耗的影響,”省能運具推廣說明會車輛節能研討會, 2003年9月16日.
[29] 李添財,“汽車空氣動力學”全華科技圖書股份有限公司, 1999年1月.