| 研究生: |
胡家倫 Hu, Chia-Lun |
|---|---|
| 論文名稱: |
聚苯咪唑/離子液體複合薄膜於高溫型質子交換膜燃料電池性能研究 Performance Study of Polybenzimidazole/Ionic Liquids Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 聚苯咪唑 、離子液體 、高溫型質子交換膜燃料電池 、長時間測試 |
| 外文關鍵詞: | polybenzimidazole, ionic liquids, high-temperature PEMFC, long-term durability test |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用2,2-bis (4-carboxyphenyl)-hexaflouopropane 和3,3’-diaminobenzidine兩種單體成功地合成出六氟聚苯咪唑高分子(fluorine-containing polybenzimidazole, 6F-PBI),在成膜過程中添加離子液體1-hexyl-3methylimidazolium trifluoromethanesulfonate (HMI-Tf)與6F-PBI混摻,製備出一系列的聚苯咪唑/離子液體複合薄膜,並進行機械性質和熱性質等測試。研究顯示,HMI-Tf的添加使複合薄膜的熱性質與機械性質下降,卻提升了質子導電度,在160 ℃下均達0.0021 S/cm。
薄膜進行磷酸摻雜後,在磷酸摻雜量僅有129 %的複合薄膜於160 ℃下均有0.015 S/cm以上的質子導電度。在單電池測試部分,分為十四天開關測試與三十天穩定測試。在開關測試 (160 ℃下負載電流200 mA/cm2操作12小時而後關閉燃料降回室溫),複合薄膜維持穩定的開路電壓,顯示能防止燃料的穿越。而在三十天穩定測試 (160 ℃下負載電流200 mA/cm2操作720小時),複合薄膜輸出電壓衰退速度為0.054 mV/h,顯示此複合薄膜能做為一種良好的高溫型質子交換膜。
In this work, fluorine-containing polybenzimidazole (6F-PBI) was synthesized successfully. We added 1-hexyl-3methylimidazolium trifluoromethanesulfonate (HMI-Tf) into PBI solution to prepare a series of PBI/ionic liquids composite membranes. All composite membranes showed lower mechanical properties than pristine PBI membranes, but reached 0.0021 S/cm proton conductivity at 160 ℃ before phosphoric acid doped. Furthermore, phosphoric acid doped composite membranes, prepared with acid content of only 129%, could reach 0.015 S/cm proton conductivity at 160 ℃. Membrane electrode assemblies were fabricated with a size of 4 cm2 and a Pt loading of 1 mg/cm2. The composite membrane showed a little open circuit voltage change rate and proved stable in startup and shutdown tests (operated at 160 ℃ with 200 mA/cm2 for 12 h and then kept off for 12 h at room temperature). In long-term durability tests (operated at 160 ℃ with 200 mA/cm2 for 720 h), the composite membrane showed the cell voltage decay rate of 0.054 mV/h, indicating high stability during operation.
[1] "BP Statistical Review of World Energy" (2018).
[2] U. Bossel, "The birth of the fuel cell. European Fuel Cell Forum, Oberrohrdorf," (2000).
[3] W. R. Grove, "XXIV. On voltaic series and the combination of gases by platinum," Philosophical Magazine Series 3, Vol. 14, pp. 127-130 (1839).
[4] Wikipedia, "William Grove."
[5] "Renewable energy systems," Fuel Cell Today (2012).
[6] U. S. DOE, "Fuel Cell Factsheet" (2010).
[7] A. Chandan, M. Hattenberger, A. El-Kharouf, S. Du, A. Dhir, V. Self, et al., "High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review," Journal of Power Sources, Vol. 231, pp. 264-278 (2013).
[8] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃," Chemistry of materials, Vol. 15, pp. 4896-4915 (2003).
[9] M. A. Haque, A. B. Sulong, K. S. Loh, E. H. Majlan, T. Husaini, and R. E. Rosli, "Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review," International Journal of Hydrogen Energy, Vol. 42, pp. 9156-9179 (2017).
[10] Y. Shao, G. Yin, Z. Wang, and Y. Gao, "Proton exchange membrane fuel cell from low temperature to high temperature: material challenges," Journal of Power Sources, Vol. 167, pp. 235-242 (2007).
[11] S. Subianto, "Recent advances in polybenzimidazole/ phosphoric acid membranes for high-temperature fuel cells," Polymer International, Vol. 63, pp. 1134-1144 (2014).
[12] Q. Li, R. He, J.-A. Gao, J. O. Jensen, and N. J. Bjerrum, "The CO poisoning effect in PEMFCs operational at temperatures up to 200 ℃," Journal of the Electrochemical Society, Vol. 150, pp. A1599-A1605 (2003).
[13] H. Vogel and C. Marvel, "Polybenzimidazoles, new thermally stable polymers," Journal of Polymer Science, Vol. 50, pp. 511-539 (1961).
[14] H. Vogel and C. Marvel, "Polybenzimidazoles. II," Journal of Polymer Science Part A: General Papers, Vol. 1, pp. 1531-1541 (1963).
[15] W. Shi and L. A. Baker, "Imaging heterogeneity and transport of degraded Nafion membranes," RSC Adv., Vol. 5, pp. 99284-99290 (2015).
[16] M. Armand, F. Endres, D. Macfarlane, H. Ohno, and B. Scrosati, "Ionic-liquid materials for the electrochemical challenges of the future," Nature Materials, Vol. 8, pp. 621-629 (2009).
[17] A. Diedrichs and J. Gmehling, "Measurement of heat capacities of ionic liquidsby differential scanning calorimetry," Fluid Phase Equilibria, Vol. 244, pp. 68–77 (2006).
[18] S. Forsyth, J. Pringle, and D. MacFarlane, "Ionic Liquids—An Overview," Australian Journal of Chemistry, Vol. 57, pp.113-119 (2004).
[19] J. Larminie, A. Dicks, and M. S. McDonald, "Fuel cell systems explained," Vol. 2: J. Wiley Chichester, UK, (2003).
[20] C. He, S. Desai, G. Brown, and S. Bollepalli, "PEM Fuel Cell Catalysts: Cost, Performance, and Durability," The Electrochemical Society Interface, Vol.14, pp. 41-45 (2005).
[21] A. K. Santra and D. W. Goodman, "Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures," Electrochimica Acta, Vol.47, pp.3595-3609 (2005).
[22] P. Waszczuk, G. Q. Lu, A. Wieckowski, C. Lu, C. Rice, and R. I. Masel, " UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis," Electrochimica Acta, Vol. 47, pp. 3637-3652 (2002).
[23] M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, et al., "Two Fuel Cell Cars In Every Garage?," The Electrochemical Society Interface, Vol. 14, pp. 24-35 (2005).
[24] A. Z. Weber and J. Newman, "Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells," Journal of the Electrochemical Society, Vol. 153, pp. A2205-A2214 (2006).
[25] J.-C. LASSEGUES, "20 Mixed inorganic-organic systems: the acid/polymer blends," Proton Conductors: Solids, Membranes and Gels-Materials and Devices, Vol. 2, pp. 311 (1992).
[26] S. J. Paddison, K.-D. Kreuer, and J. Maier, "About the choice of the protogenic group in polymer electrolyte membranes: Ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes," Physical Chemistry Chemical Physics, Vol. 8, pp. 4530-4542 (2006).
[27] M. Schuster, T. Rager, A. Noda, K. D. Kreuer, and J. Maier, "About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds," Fuel Cells, Vol. 5, pp. 355-365 (2005).
[28] E. G. S. P. Inc., " Fuel Cell Handbook (Fifth Edition)," Science Applications International Corporation, (2000).
[29] J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid‐doped polybenzimidazoles: a new polymer electrolyte," Journal of The Electrochemical Society, Vol. 142, pp. L121-L123 (1995).
[30] J. A. Asensio, S. Borrósb, and P. Gómez-Romero, "Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting," Journal of Membrane Science, Vol. 241, pp. 89-93 (2004).
[31] C. Wannek, B. Kohnen, H.-F. Oetjen, H. Lippert, and J. Mergel, "Durability of ABPBI-based MEAs for High Temperature PEMFCs at Different Operating Conditions," Fuel Cells, Vol. 8, pp.87-95 (2008).
[32] Y. Oono, A. Sounai, and M. Hori, "Prolongation of lifetime of high temperature proton exchangemembrane fuel cells," Journal of Power Sources, Vol. 241, pp. 87-93 (2013).
[33] Q. Li and J. O. Jensen, "Membranes for High Temperature PEMFC Based on Acid‐Doped Polybenzimidazoles," Membranes for Energy Conversion, Vol. 2, pp. 61-96 (2008).
[34] S. Qing, W. Huang, and D. Yan, "Synthesis and characterization of thermally stable sulfonated polybenzimidazoles," European polymer journal, Vol. 41, pp. 1589-1595 (2005).
[35] S.-W. Chuang and S. L.-C. Hsu, "Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 44, pp. 4508-4513 (2006).
[36] H. Pu, L. Wang, H. Pan, and D. Wan, "Synthesis and Characterization of Fluorine-Containing Polybenzimidazole for Proton Conducting Membranes in Fuel Cells," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 48, pp. 2115-2122 (2010).
[37] S. Subianto, "Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells," Polymer International, Vol. 63, pp. 1134-1144 (2014).
[38] D. MacFarlane, J. Huang, and M. Forsyth, "Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries," Nature, Vol. 402, pp. 792-794 (1999).
[39] M. Doyle, S. K. Choi, and G. Proulx, "High‐Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane‐Ionic Liquid Composites," Journal of Electrochemical Society, Vol. 147, pp. 34-37 (2000).
[40] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida, "Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator," Chemical Communications, pp.374-375 (2002).
[41] M. C. Buzzeo, C. Hardacre, and R. G. Compton, "Use of Room Temperature Ionic Liquids in Gas Sensor Design," Analytical Chemistry, Vol. 76, pp. 4583-4588 (2004).
[42] P. Walden, "Molecular weights and electrical conductivity of several fused salts," Bulletin of the Russian Academy of Sciences, pp. 405-422 (1914).
[43] F. H. Hurley and T. P. Wier, "The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature," Journal of Electrochemical Society, Vol. 98, pp. 207-212 (1951).
[44] R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi, and C. L. Hussey, "Density, Electric Conductivity, and Viscosity of Several N‐Alkylpyridinium Halides and Their Mixtures with Aluminum Chloride," Journal of Electrochemical Society, Vol. 126, pp. 1644-1650 (1979).
[45] J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, "Dialkylimidazolium Chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis," Inorganic Chemistry, Vol. 21, pp. 1263-1264 (1982).
[46] J. S. Wilkes, M. J. Zaworotko, "Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids," Journal of the Chemical Society, Chemical Communications, pp. 965-967 (1992).
[47] R. T. Carlin, P. C. Truelove, and R. A. Osteryoung, "Electrochemical and spectroscopic study of anthracene in a mixed Lewis—Brønsted acid ambient temperature molten salt system," Electrochimica Acta, Vol. 37, pp. 2615-2628 (1992).
[48] P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. D. Souza, and J. Dupont, "The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes," Polyhedron, Vol. 15, pp. 1217-1219 (1996).
[49] P. Bonhôte, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, "Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts," Inorganic Chemistry, Vol. 35, pp. 1168-1178 (1996).
[50] J. T.-W. Wang and S. L.-C. Hsu, "Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids," Electrochimica Acta, Vol. 56, pp. 2842-2846 (2011).
[51] K.-D. Kreuer, "Proton conductivity: materials and applications," Chemistry of materials, Vol. 8, pp. 610-641 (1996).
[52] N. Agmon, "The grotthuss mechanism," Chemical Physics Letters, Vol. 244, pp. 456-462 (1995).
[53] Z. Zuo, Y. Fu, and A. Manthiram, "Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells," Polymers, Vol. 4, pp. 1627-1644 (2012).
[54] Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells," Journal of The Electrochemical Society, Vol. 151, pp. A8-A16 (2004).
[55] S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. Wilkinson, "Aging mechanisms and lifetime of PEFC and DMFC," Journal of Power Sources, Vol. 127, pp. 127-134 (2004).
[56] T. J. Schmidt, "High-temperature polymer electrolyte fuel cells: durability insights," in Polymer Electrolyte Fuel Cell Durability, ed: Springer, pp. 199-221 (2009).
[57] G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xu, and Z.-G. Shao, "Studies of performance degradation of a high temperature PEMFC based on H 3 PO 4-doped PBI," Journal of Power Sources, Vol. 162, pp. 547-552 (2006).
[58] Y. Zhai, H. Zhang, D. Xing, and Z.-G. Shao, "The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test," Journal of Power Sources, Vol. 164, pp. 126-133 (2007).
[59] Y. Oono, A. Sounai, and M. Hori, "Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 210, pp. 366-373 (2012).
[60] Y. Oono, T. Fukuda, A. Sounai, and M. Hori, "Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 195, pp. 1007-1014 (2010).
[61] Y. Oono, A. Sounai, and M. Hori, "Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 189, pp. 943-949 (2009).
[62] C. Wannek, B. Kohnen, H. F. Oetjen, H. Lippert, and J. Mergel, "Durability of ABPBI-based MEAs for High Temperature PEMFCs at Different Operating Conditions," Fuel Cells, Vol. 8, pp. 87-95 (2008).
[63] S. Yu, L. Xiao, and B. C. Benicewicz, "Durability Studies of PBI‐based High Temperature PEMFCs," Fuel Cells, Vol. 8, pp. 165-174 (2008).
[64] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells," Journal of Membrane Science, Vol. 277, pp. 38-45 (2006).
[65] G. Qian and B. C. Benicewicz, "Synthesis and Characterization of High Molecular Weight Hexafluoroisopropylidene-Containing Polybenzimidazole for High-Temperature Polymer Electrolyte Membrane Fuel Cells," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 47, pp. 4064-4073 (2009).
[66] X. Li, G. Qian, X. Chen, and B. C. Benicewicz, "Synthesis and Characterization of a NewFluorine-Containing Polybenzimidazole (PBI) for Proton-ConductingMembranes in Fuel Cells," Fuel cells, Vol. 13, pp. 832-842 (2013).
[67] F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang, "Nafion/PTFE composite membranes for fuel cell applications," Journal of Membrane Science, Vol. 212, pp. 213-223 (2003).
[68] C. H. Shen, L.-C. Jheng, S. L.-C. Hsu, and J. T.-W. Wang, "Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells," Journal of Materials Chemistry, Vol. 21, pp. 15660-15665 (2011).
[69] S. Wang, C. Zhao, W. Ma, G. Zhang, Z. Liu, et al., "Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells," Journal of Membrane Science, Vol. 411-412, pp. 54-63 (2012).
[70] C. Liu, X. Wang, Y. Li, S. Zhang, J. Wang, and X. Jian, "Novel cross-linked membranes based on polybenzoxazine and polybenzimidazole containing 4-phenyl phthalazinone moiety for high-temperature proton exchange membrane," Journal of Polymer Research, Vol. 24, pp. 23 (2017).
[71] M. Boaventura and A. Mendes, "Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes," International Journal of Hydrogen Energy, Vol. 35, pp. 11649-11660 (2010).
[72] C. Wannek, I. Konradi, J. Mergel, and W. Lehnert, "Redistribution of phosphoric acid in membrane electrode assemblies for high-temperature polymer electrolyte fuel cells," International Journal of Hydrogen Energy, Vol. 34, pp. 9479-9485 (2009).
[73] P. Ferreira, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H. Gasteiger, "Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation," Journal of The Electrochemical Society, Vol. 152, pp. A2256-A2271 (2005).
[74] J. Zhang, "PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications," Springer Science & Business Media, (2008).
校內:2024-08-22公開