簡易檢索 / 詳目顯示

研究生: 胡家倫
Hu, Chia-Lun
論文名稱: 聚苯咪唑/離子液體複合薄膜於高溫型質子交換膜燃料電池性能研究
Performance Study of Polybenzimidazole/Ionic Liquids Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 聚苯咪唑離子液體高溫型質子交換膜燃料電池長時間測試
外文關鍵詞: polybenzimidazole, ionic liquids, high-temperature PEMFC, long-term durability test
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用2,2-bis (4-carboxyphenyl)-hexaflouopropane 和3,3’-diaminobenzidine兩種單體成功地合成出六氟聚苯咪唑高分子(fluorine-containing polybenzimidazole, 6F-PBI),在成膜過程中添加離子液體1-hexyl-3methylimidazolium trifluoromethanesulfonate (HMI-Tf)與6F-PBI混摻,製備出一系列的聚苯咪唑/離子液體複合薄膜,並進行機械性質和熱性質等測試。研究顯示,HMI-Tf的添加使複合薄膜的熱性質與機械性質下降,卻提升了質子導電度,在160 ℃下均達0.0021 S/cm。
      薄膜進行磷酸摻雜後,在磷酸摻雜量僅有129 %的複合薄膜於160 ℃下均有0.015 S/cm以上的質子導電度。在單電池測試部分,分為十四天開關測試與三十天穩定測試。在開關測試 (160 ℃下負載電流200 mA/cm2操作12小時而後關閉燃料降回室溫),複合薄膜維持穩定的開路電壓,顯示能防止燃料的穿越。而在三十天穩定測試 (160 ℃下負載電流200 mA/cm2操作720小時),複合薄膜輸出電壓衰退速度為0.054 mV/h,顯示此複合薄膜能做為一種良好的高溫型質子交換膜。

    In this work, fluorine-containing polybenzimidazole (6F-PBI) was synthesized successfully. We added 1-hexyl-3methylimidazolium trifluoromethanesulfonate (HMI-Tf) into PBI solution to prepare a series of PBI/ionic liquids composite membranes. All composite membranes showed lower mechanical properties than pristine PBI membranes, but reached 0.0021 S/cm proton conductivity at 160 ℃ before phosphoric acid doped. Furthermore, phosphoric acid doped composite membranes, prepared with acid content of only 129%, could reach 0.015 S/cm proton conductivity at 160 ℃. Membrane electrode assemblies were fabricated with a size of 4 cm2 and a Pt loading of 1 mg/cm2. The composite membrane showed a little open circuit voltage change rate and proved stable in startup and shutdown tests (operated at 160 ℃ with 200 mA/cm2 for 12 h and then kept off for 12 h at room temperature). In long-term durability tests (operated at 160 ℃ with 200 mA/cm2 for 720 h), the composite membrane showed the cell voltage decay rate of 0.054 mV/h, indicating high stability during operation.

    摘要 I Extended Abstract II 誌謝 X 總目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究背景 5 1.3 研究動機與目的 7 第二章 文獻回顧與原理 9 2.1 質子交換膜燃料電池簡介 9 2.2 質子交換膜燃料電池原理 13 2.3 Polybenzimidazole (PBI)之簡介 17 2.4 離子液體之簡介及應用 19 2.4.1 離子液體簡介 19 2.4.2 離子液體之發展 20 2.5 質子傳導原理 22 2.6 單電池測試與衰退機制 24 2.6.1 單電池衰退機制 24 2.6.2 電池長時間穩定性測試 25 第三章 實驗方法及步驟 28 3.1 實驗材料 28 3.2 實驗儀器 28 3.3 實驗步驟 30 3.3.1 Polybenzimidazole (6F-PBI) 合成 30 3.3.2 Pristine PBI薄膜製備 31 3.3.3 PBI/HMI-Tf複合薄膜製備 31 3.4 結構鑑定 32 3.4.1 傅利葉轉換紅外線光譜分析 (FT-IR) 32 3.4.2 核磁共振光譜分析 (1H-NMR) 33 3.5 薄膜性質分析 34 3.5.1 固有黏度量測 (Inherent viscosity) 34 3.5.2 熱重損失分析儀 (TGA) 34 3.5.3 機械性質分析 (Mechanical properties) 35 3.5.4 熱機械分析 (TMA) 35 3.6 質子導電度量測 36 3.6.1 薄膜磷酸摻雜 36 3.6.2 質子導電度量測 (Proton conductivity) 36 3.7 膜電極製備 (Membrane electrode assemblies, MEAs) 39 3.7.1 觸媒漿料配製與塗佈 39 3.7.2 熱壓 39 3.8 單電池測試 40 3.8.1 單電池組裝 40 3.8.2 單電池效能測試 41 3.8.3 十四天開關測試 (Startup and shutdown tests) 41 3.8.4 三十天穩定測試 (Long-term durability tests) 41 第四章 結果與討論 42 4.1 合成結構鑑定與性質分析 42 4.1.1 6F-PBI之合成 42 4.1.2 6F-PBI固有黏度量測 42 4.1.3 傅利葉轉換紅外線光譜分析 (FT-IR) 43 4.1.4 核磁共振光譜分析 (1H-NMR) 45 4.2 PBI/HMI-Tf複合薄膜性質分析 46 4.2.1 熱重損失分析 (TGA) 46 4.2.2 熱機械分析 (TMA) 48 4.2.3 機械性質分析 (Mechanical properties) 51 4.2.4 薄膜摻雜磷酸之分析 (Acid content analysis) 52 4.2.5 質子導電度分析 (Proton conductivity) 54 4.3 PBI/HMI-Tf複合薄膜單電池元件測試分析 56 4.3.1 單電池元件效能分析 56 4.3.2 單電池十四天開關測試 (Startup and shutdown tests) 58 4.3.3 單電池三十天穩定測試 (Long-term durability tests) 60 第五章 結論與未來展望 64 第六章 參考文獻 66

    [1] "BP Statistical Review of World Energy" (2018).
    [2] U. Bossel, "The birth of the fuel cell. European Fuel Cell Forum, Oberrohrdorf," (2000).
    [3] W. R. Grove, "XXIV. On voltaic series and the combination of gases by platinum," Philosophical Magazine Series 3, Vol. 14, pp. 127-130 (1839).
    [4] Wikipedia, "William Grove."
    [5] "Renewable energy systems," Fuel Cell Today (2012).
    [6] U. S. DOE, "Fuel Cell Factsheet" (2010).
    [7] A. Chandan, M. Hattenberger, A. El-Kharouf, S. Du, A. Dhir, V. Self, et al., "High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review," Journal of Power Sources, Vol. 231, pp. 264-278 (2013).
    [8] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃," Chemistry of materials, Vol. 15, pp. 4896-4915 (2003).
    [9] M. A. Haque, A. B. Sulong, K. S. Loh, E. H. Majlan, T. Husaini, and R. E. Rosli, "Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review," International Journal of Hydrogen Energy, Vol. 42, pp. 9156-9179 (2017).
    [10] Y. Shao, G. Yin, Z. Wang, and Y. Gao, "Proton exchange membrane fuel cell from low temperature to high temperature: material challenges," Journal of Power Sources, Vol. 167, pp. 235-242 (2007).
    [11] S. Subianto, "Recent advances in polybenzimidazole/ phosphoric acid membranes for high-temperature fuel cells," Polymer International, Vol. 63, pp. 1134-1144 (2014).
    [12] Q. Li, R. He, J.-A. Gao, J. O. Jensen, and N. J. Bjerrum, "The CO poisoning effect in PEMFCs operational at temperatures up to 200 ℃," Journal of the Electrochemical Society, Vol. 150, pp. A1599-A1605 (2003).
    [13] H. Vogel and C. Marvel, "Polybenzimidazoles, new thermally stable polymers," Journal of Polymer Science, Vol. 50, pp. 511-539 (1961).
    [14] H. Vogel and C. Marvel, "Polybenzimidazoles. II," Journal of Polymer Science Part A: General Papers, Vol. 1, pp. 1531-1541 (1963).
    [15] W. Shi and L. A. Baker, "Imaging heterogeneity and transport of degraded Nafion membranes," RSC Adv., Vol. 5, pp. 99284-99290 (2015).
    [16] M. Armand, F. Endres, D. Macfarlane, H. Ohno, and B. Scrosati, "Ionic-liquid materials for the electrochemical challenges of the future," Nature Materials, Vol. 8, pp. 621-629 (2009).
    [17] A. Diedrichs and J. Gmehling, "Measurement of heat capacities of ionic liquidsby differential scanning calorimetry," Fluid Phase Equilibria, Vol. 244, pp. 68–77 (2006).
    [18] S. Forsyth, J. Pringle, and D. MacFarlane, "Ionic Liquids—An Overview," Australian Journal of Chemistry, Vol. 57, pp.113-119 (2004).
    [19] J. Larminie, A. Dicks, and M. S. McDonald, "Fuel cell systems explained," Vol. 2: J. Wiley Chichester, UK, (2003).
    [20] C. He, S. Desai, G. Brown, and S. Bollepalli, "PEM Fuel Cell Catalysts: Cost, Performance, and Durability," The Electrochemical Society Interface, Vol.14, pp. 41-45 (2005).
    [21] A. K. Santra and D. W. Goodman, "Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures," Electrochimica Acta, Vol.47, pp.3595-3609 (2005).
    [22] P. Waszczuk, G. Q. Lu, A. Wieckowski, C. Lu, C. Rice, and R. I. Masel, " UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis," Electrochimica Acta, Vol. 47, pp. 3637-3652 (2002).
    [23] M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, et al., "Two Fuel Cell Cars In Every Garage?," The Electrochemical Society Interface, Vol. 14, pp. 24-35 (2005).
    [24] A. Z. Weber and J. Newman, "Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells," Journal of the Electrochemical Society, Vol. 153, pp. A2205-A2214 (2006).
    [25] J.-C. LASSEGUES, "20 Mixed inorganic-organic systems: the acid/polymer blends," Proton Conductors: Solids, Membranes and Gels-Materials and Devices, Vol. 2, pp. 311 (1992).
    [26] S. J. Paddison, K.-D. Kreuer, and J. Maier, "About the choice of the protogenic group in polymer electrolyte membranes: Ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes," Physical Chemistry Chemical Physics, Vol. 8, pp. 4530-4542 (2006).
    [27] M. Schuster, T. Rager, A. Noda, K. D. Kreuer, and J. Maier, "About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds," Fuel Cells, Vol. 5, pp. 355-365 (2005).
    [28] E. G. S. P. Inc., " Fuel Cell Handbook (Fifth Edition)," Science Applications International Corporation, (2000).
    [29] J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid‐doped polybenzimidazoles: a new polymer electrolyte," Journal of The Electrochemical Society, Vol. 142, pp. L121-L123 (1995).
    [30] J. A. Asensio, S. Borrósb, and P. Gómez-Romero, "Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting," Journal of Membrane Science, Vol. 241, pp. 89-93 (2004).
    [31] C. Wannek, B. Kohnen, H.-F. Oetjen, H. Lippert, and J. Mergel, "Durability of ABPBI-based MEAs for High Temperature PEMFCs at Different Operating Conditions," Fuel Cells, Vol. 8, pp.87-95 (2008).
    [32] Y. Oono, A. Sounai, and M. Hori, "Prolongation of lifetime of high temperature proton exchangemembrane fuel cells," Journal of Power Sources, Vol. 241, pp. 87-93 (2013).
    [33] Q. Li and J. O. Jensen, "Membranes for High Temperature PEMFC Based on Acid‐Doped Polybenzimidazoles," Membranes for Energy Conversion, Vol. 2, pp. 61-96 (2008).
    [34] S. Qing, W. Huang, and D. Yan, "Synthesis and characterization of thermally stable sulfonated polybenzimidazoles," European polymer journal, Vol. 41, pp. 1589-1595 (2005).
    [35] S.-W. Chuang and S. L.-C. Hsu, "Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 44, pp. 4508-4513 (2006).
    [36] H. Pu, L. Wang, H. Pan, and D. Wan, "Synthesis and Characterization of Fluorine-Containing Polybenzimidazole for Proton Conducting Membranes in Fuel Cells," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 48, pp. 2115-2122 (2010).
    [37] S. Subianto, "Recent advances in polybenzimidazole/phosphoric acid membranes for high-temperature fuel cells," Polymer International, Vol. 63, pp. 1134-1144 (2014).
    [38] D. MacFarlane, J. Huang, and M. Forsyth, "Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries," Nature, Vol. 402, pp. 792-794 (1999).
    [39] M. Doyle, S. K. Choi, and G. Proulx, "High‐Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane‐Ionic Liquid Composites," Journal of Electrochemical Society, Vol. 147, pp. 34-37 (2000).
    [40] W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida, "Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator," Chemical Communications, pp.374-375 (2002).
    [41] M. C. Buzzeo, C. Hardacre, and R. G. Compton, "Use of Room Temperature Ionic Liquids in Gas Sensor Design," Analytical Chemistry, Vol. 76, pp. 4583-4588 (2004).
    [42] P. Walden, "Molecular weights and electrical conductivity of several fused salts," Bulletin of the Russian Academy of Sciences, pp. 405-422 (1914).
    [43] F. H. Hurley and T. P. Wier, "The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature," Journal of Electrochemical Society, Vol. 98, pp. 207-212 (1951).
    [44] R. A. Carpio, L. A. King, R. E. Lindstrom, J. C. Nardi, and C. L. Hussey, "Density, Electric Conductivity, and Viscosity of Several N‐Alkylpyridinium Halides and Their Mixtures with Aluminum Chloride," Journal of Electrochemical Society, Vol. 126, pp. 1644-1650 (1979).
    [45] J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, "Dialkylimidazolium Chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis," Inorganic Chemistry, Vol. 21, pp. 1263-1264 (1982).
    [46] J. S. Wilkes, M. J. Zaworotko, "Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids," Journal of the Chemical Society, Chemical Communications, pp. 965-967 (1992).
    [47] R. T. Carlin, P. C. Truelove, and R. A. Osteryoung, "Electrochemical and spectroscopic study of anthracene in a mixed Lewis—Brønsted acid ambient temperature molten salt system," Electrochimica Acta, Vol. 37, pp. 2615-2628 (1992).
    [48] P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. D. Souza, and J. Dupont, "The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes," Polyhedron, Vol. 15, pp. 1217-1219 (1996).
    [49] P. Bonhôte, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, "Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts," Inorganic Chemistry, Vol. 35, pp. 1168-1178 (1996).
    [50] J. T.-W. Wang and S. L.-C. Hsu, "Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids," Electrochimica Acta, Vol. 56, pp. 2842-2846 (2011).
    [51] K.-D. Kreuer, "Proton conductivity: materials and applications," Chemistry of materials, Vol. 8, pp. 610-641 (1996).
    [52] N. Agmon, "The grotthuss mechanism," Chemical Physics Letters, Vol. 244, pp. 456-462 (1995).
    [53] Z. Zuo, Y. Fu, and A. Manthiram, "Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells," Polymers, Vol. 4, pp. 1627-1644 (2012).
    [54] Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells," Journal of The Electrochemical Society, Vol. 151, pp. A8-A16 (2004).
    [55] S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. Wilkinson, "Aging mechanisms and lifetime of PEFC and DMFC," Journal of Power Sources, Vol. 127, pp. 127-134 (2004).
    [56] T. J. Schmidt, "High-temperature polymer electrolyte fuel cells: durability insights," in Polymer Electrolyte Fuel Cell Durability, ed: Springer, pp. 199-221 (2009).
    [57] G. Liu, H. Zhang, J. Hu, Y. Zhai, D. Xu, and Z.-G. Shao, "Studies of performance degradation of a high temperature PEMFC based on H 3 PO 4-doped PBI," Journal of Power Sources, Vol. 162, pp. 547-552 (2006).
    [58] Y. Zhai, H. Zhang, D. Xing, and Z.-G. Shao, "The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test," Journal of Power Sources, Vol. 164, pp. 126-133 (2007).
    [59] Y. Oono, A. Sounai, and M. Hori, "Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 210, pp. 366-373 (2012).
    [60] Y. Oono, T. Fukuda, A. Sounai, and M. Hori, "Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 195, pp. 1007-1014 (2010).
    [61] Y. Oono, A. Sounai, and M. Hori, "Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells," Journal of Power Sources, Vol. 189, pp. 943-949 (2009).
    [62] C. Wannek, B. Kohnen, H. F. Oetjen, H. Lippert, and J. Mergel, "Durability of ABPBI-based MEAs for High Temperature PEMFCs at Different Operating Conditions," Fuel Cells, Vol. 8, pp. 87-95 (2008).
    [63] S. Yu, L. Xiao, and B. C. Benicewicz, "Durability Studies of PBI‐based High Temperature PEMFCs," Fuel Cells, Vol. 8, pp. 165-174 (2008).
    [64] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells," Journal of Membrane Science, Vol. 277, pp. 38-45 (2006).
    [65] G. Qian and B. C. Benicewicz, "Synthesis and Characterization of High Molecular Weight Hexafluoroisopropylidene-Containing Polybenzimidazole for High-Temperature Polymer Electrolyte Membrane Fuel Cells," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 47, pp. 4064-4073 (2009).
    [66] X. Li, G. Qian, X. Chen, and B. C. Benicewicz, "Synthesis and Characterization of a NewFluorine-Containing Polybenzimidazole (PBI) for Proton-ConductingMembranes in Fuel Cells," Fuel cells, Vol. 13, pp. 832-842 (2013).
    [67] F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang, "Nafion/PTFE composite membranes for fuel cell applications," Journal of Membrane Science, Vol. 212, pp. 213-223 (2003).
    [68] C. H. Shen, L.-C. Jheng, S. L.-C. Hsu, and J. T.-W. Wang, "Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells," Journal of Materials Chemistry, Vol. 21, pp. 15660-15665 (2011).
    [69] S. Wang, C. Zhao, W. Ma, G. Zhang, Z. Liu, et al., "Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells," Journal of Membrane Science, Vol. 411-412, pp. 54-63 (2012).
    [70] C. Liu, X. Wang, Y. Li, S. Zhang, J. Wang, and X. Jian, "Novel cross-linked membranes based on polybenzoxazine and polybenzimidazole containing 4-phenyl phthalazinone moiety for high-temperature proton exchange membrane," Journal of Polymer Research, Vol. 24, pp. 23 (2017).
    [71] M. Boaventura and A. Mendes, "Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes," International Journal of Hydrogen Energy, Vol. 35, pp. 11649-11660 (2010).
    [72] C. Wannek, I. Konradi, J. Mergel, and W. Lehnert, "Redistribution of phosphoric acid in membrane electrode assemblies for high-temperature polymer electrolyte fuel cells," International Journal of Hydrogen Energy, Vol. 34, pp. 9479-9485 (2009).
    [73] P. Ferreira, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H. Gasteiger, "Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation," Journal of The Electrochemical Society, Vol. 152, pp. A2256-A2271 (2005).
    [74] J. Zhang, "PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications," Springer Science & Business Media, (2008).

    無法下載圖示 校內:2024-08-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE