簡易檢索 / 詳目顯示

研究生: 武維照
Vo, Hieu-Thao
論文名稱: 碳摻雜氮化碳用於光催化生物質重整制氫
Carbon-Doped Poly (Heptazine-Imide) For Photocatalytic Biomass Reforming to Produce Hydrogen
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 56
中文關鍵詞: 氮化碳光催化生物質重整碳摻雜庚嗪酰亞胺殼聚醣析氫
外文關鍵詞: carbon nitride, photocatalytic biomass reforming, carbon-doped, heptazine imide, chitosan, hydrogen evolution
相關次數: 點閱:59下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化石燃料是不可持續的能源,由於過度開採而迅速耗盡。 從環境的角度來看,化石氣體燃燒的價值過大,導致大氣中二氧化碳排放水平急劇上升,造成全球變暖和天氣變化。 將生物質光催化轉化為氫氣是一種捕獲和儲存陽光作為化學能的方法,然後可以在環境友好的能源循環中排放。 聚(庚嗪酰亞胺)(PHI) 受到了廣泛關注,因為它具有有趣的雙重功能:在同一材料中輕質吸收和存儲光生電子。 在這項研究中,我們報告了在殼聚醣和三聚氰胺作為起始前體存在的情況下 PHI 的結構修飾。 殼聚醣-鉀-PHI (C-K-PHI) 表明在有效激發電子和促進電荷載流子轉移方面具有優勢此外,C-K-PHI 增強的光吸收改善了生物質在可見光照射下產氫過程中的光轉化。 沉積有 Pt 助催化劑的 C-K-PHI 可有效催化氫氣中濃度分別為 120 和 80 μmol.h-1 的半乳糖和葡萄糖水溶液超過 96 小時。 在420 nm單色光照射下,半乳糖和葡萄糖重整的表觀量子產率分別達到81.3%和65.2%。 本研究強調了一種通過殼聚醣重塑 PHI 結構的綠色可靠策略,從而顯著促進生物質光催化重整為 H2 釋放和高附加值精細化學品。

    Due to overexploitation, fossil fuels are nonrenewable energy sources that are fast running out. The value of burning fossil fuels is excessive from an environmental standpoint; as a result, atmospheric CO2 emission levels have increased alarmingly, contributing to global warming and climatic change. It is possible to absorb and store solar energy as chemical energy through the photocatalytic reformation of biomass into hydrogen, which may subsequently be released in an eco-friendly energy cycle. Because it demonstrates an amazing double functionality-lightweight absorption and storage of photogenerated electrons in the same substance-Poly (heptazine imide) (PHI) has drawn a lot of interest. In the present work, we describe a structural alteration of PHI with chitosan and melamine acting as starting precursors. Chitosan-Potassium-PHI (C-K-PHI) is superior at successfully stimulating the electron and encouraging the transfer of charge carriers. Additionally, the better photo reforming of biomass in H¬ generation under visible irradiation was made possible by C-K-increased PHI's light absorption. Aqueous solutions of galactose and glucose in H2 were successfully catalyzed by C-K-PHI deposited with a Pt cocatalyst for more than 96 hours at 120 and 80 mol.h-1, respectively. Under 420 nm monochromatic irradiation, the AQYs of the photocatalyst reforming of galactose is 81.3% follow by 65.2% of glucose. The current work shows a safe and effective method to modify PHI's structure using chitosan, significantly enhancing the photocatalytic reforming of biomass into high-value-added fine chemicals and H2 evolution.

    中文摘要 I SUMMARY II TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF SCHEMES VIII CHAPTER I: INTRODUCTION 1 1.1. INTRODUCTION 1 1.1.1. CATALYST OVERVIEW 1 1.1.2. CARBON NITRIDE 2 1.1.3. CHITOSAN 4 1.1.4. POLY HEPTAZINE IMIDE (PHI) 4 1.2. PHOTOCATALYTIC H2 EVOLUTION. 6 1.3. EXPERIMENTAL TECHNIQUE 7 1.3.1. CHEMICALS 7 1.3.2. SYNTHESIS OF PHOTOCATALYST. 7 1.4. PHOTO REFORMING TO PRODUCE HYDROGEN 10 1.5. CHARACTERIZATION AND MEASUREMENT EQUIPMENT. 11 CHAPTER 2: PRINCIPLE OF ANALYTICAL INSTRUMENTS. 12 2.1. FOURIER TRANSFORM INFRARED SPECTROSCOPY (FT-IR). 12 2.2. X-RAY DIFFRACTION. 12 2.3. SCANNING ELECTRON MICROSCOPY, SEM 13 2.4. UV-VISIBLE SPECTROPHOTOMETER 13 2.5. PHOTOLUMINESCENCE, PL 15 2.6. TIME-RESOLVE PHOTOLUMINESCENCE (TRPL) 16 2.7. UV PHOTOELECTRON SPECTROSCOPY (UPS) 16 2.8. ELECTRON PARAMAGNETIC RESONANCE SPECTROMETER, EPR. 17 2.9. X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 18 CHAPTER 3: CHARACTERIZATION AND DISCUSSION 19 3.1. SCANNING MICROSCOPE ELECTRON 19 3.2. X-RAY DIFFRACTION ANALYSIS (XRD) 20 3.3. FOURIER TRANSFORM INFRARED (FTIR) ANALYSIS 22 3.4. UV-VISIBLE ABSORPTION SPECTRUM (UV-VIS) ANALYSIS 24 3.5. UV PHOTOELECTRON SPECTROSCOPY 27 3.6. PHOTOLUMINESCENCE (PL) SPECTRA ANALYSIS 29 3.7. TIME-RESOLVE PHOTOLUMINESCENCE (TRPL) SPECTROSCOPY ANALYSIS 31 3.8. APPARENT QUANTUM EFFICIENCY (AQE) ANALYSIS 33 3.9. ELECTRON PARAMAGNETIC RESONANCE (EPR) ANALYSIS 36 3.10. NMR SPECTROSCOPY 39 3.11. X-RAY PHOTOELECTRON SPECTROSCOPY 41 3.12. DARK PHOTOCATALYSIS 44 3.13. PHOTOCATALYTIC H2 EVOLUTION 46 3.14. PHOTOCATALYTIC OF BIOMASS REFORMING INTO H2 47 CHAPTER 4: CONCLUSION 49 REFERENCE 50

    [1] P.H. Gleick, The implications of global climatic changes for international security, Climatic Change, 15 (1989) 309-325.
    [2] E.-M. Aro, From first generation biofuels to advanced solar biofuels, Ambio, 45 (2016) 24-31.
    [3] X. Liu, X. Duan, W. Wei, S. Wang, B.-J. Ni, Photocatalytic conversion of lignocellulosic biomass to valuable products, Green Chemistry, 21 (2019) 4266-4289.
    [4] P.D. Frischmann, K. Mahata, F. Würthner, Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies, Chemical Society Reviews, 42 (2013) 1847-1870.
    [5] R. Navarro, M. Sanchez-Sanchez, M. Alvarez-Galvan, F. Del Valle, J. Fierro, Hydrogen production from renewable sources: biomass and photocatalytic opportunities, Energy & Environmental Science, 2 (2009) 35-54.
    [6] T. Butburee, P. Chakthranont, C. Phawa, K. Faungnawakij, Beyond artificial photosynthesis: prospects on photobiorefinery, ChemCatChem, 12 (2020) 1873-1890.
    [7] E. Salehi, F. Heidary, P. Daraei, M. Keyhani, M. Behjomanesh, Carbon nanostructures for advanced nanocomposite mixed matrix membranes: A comprehensive overview, Reviews in Chemical Engineering, 36 (2020) 723-748.
    [8] R.S. de Almeida Ribeiro, L.E. Monteiro Ferreira, V. Rossa, C.G. Lima, M.W. Paixao, R.S. Varma, T. de Melo Lima, Graphitic Carbon Nitride‐Based Materials as Catalysts for the Upgrading of Lignocellulosic Biomass‐Derived Molecules, ChemSusChem, 13 (2020) 3992-4004.
    [9] J. Wang, P. Kumar, H. Zhao, M.G. Kibria, J. Hu, Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives, Green Chemistry, 23 (2021) 7435-7457.
    [10] Y. Li, X. Li, H. Zhang, Q. Xiang, Porous graphitic carbon nitride for solar photocatalytic applications, Nanoscale horizons, 5 (2020) 765-786.
    [11] W. Zhen, C. Xue, Atomic‐and Molecular‐Level Functionalizations of Polymeric Carbon Nitride for Solar Fuel Production, Solar RRL, 5 (2021) 2000440.
    [12] X. Yu, S.F. Ng, L.K. Putri, L.L. Tan, A.R. Mohamed, W.J. Ong, Point‐defect engineering: leveraging imperfections in graphitic carbon nitride (g‐C3N4) photocatalysts toward artificial photosynthesis, Small, 17 (2021) 2006851.
    [13] Z. Li, C. Chen, Q. Yang, Q. Liu, Z. Zhang, X. Fang, Modifying the bridging N atoms of polymeric carbon nitride to achieve highly enhanced photocatalytic hydrogen evolution, Applied Surface Science, 530 (2020) 147287.
    [14] C. Cheng, L. Mao, Z. Huang, J. Shi, B. Zheng, Y. Zhang, L. Guo, Bridging regulation in graphitic carbon nitride for band-structure modulation and directional charge transfer towards efficient H2 evolution under visible-light irradiation, Journal of Colloid and Interface Science, 601 (2021) 220-228.
    [15] H. Li, F. Li, Z. Wang, Y. Jiao, Y. Liu, P. Wang, X. Zhang, X. Qin, Y. Dai, B. Huang, Fabrication of carbon bridged g-C3N4 through supramolecular self-assembly for enhanced photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 229 (2018) 114-120.
    [16] A. Zambon, J.-M. Mouesca, C. Gheorghiu, P.-A. Bayle, J. Pecaut, M. Claeys-Bruno, S. Gambarelli, L. Dubois, s-Heptazine oligomers: promising structural models for graphitic carbon nitride, Chemical science, 7 (2016) 945-950.
    [17] S. Li, Z. Jin, W. Lai, H. Zhang, D. Wang, S. Song, T. Zeng, Alkali and donor–acceptor bridged three-dimensional interpenetrating polymer networks boost photocatalytic performance by efficient electron delocalization and charge transfer, Applied Catalysis B: Environmental, 292 (2021) 120153.
    [18] F. Alibart, M. Lejeune, O. Durand Drouhin, K. Zellama, M. Benlahsen, Influence of disorder on localization and density of states in amorphous carbon nitride thin films systems rich in π-bonded carbon atoms, Journal of Applied Physics, 108 (2010) 053504.
    [19] S. Rodil, S. Muhl, Bonding in amorphous carbon nitride, Diamond and related materials, 13 (2004) 1521-1531.
    [20] L. Cheng, H. Zhang, X. Li, J. Fan, Q. Xiang, Carbon–graphitic carbon nitride hybrids for heterogeneous photocatalysis, Small, 17 (2021) 2005231.
    [21] P.P. Bag, P. Sahoo, Designing metal-organic frameworks based photocatalyst for specific photocatalytic reactions: a crystal engineering approach, Green photocatalysts for energy and environmental process, Springer2020, pp. 141-186.
    [22] X. Zhang, M. Zhao, A. Wang, X. Wang, A. Du, Spin-polarization and ferromagnetism of graphitic carbon nitride materials, Journal of Materials Chemistry C, 1 (2013) 6265-6270.
    [23] J. Ren, L. Lin, K. Lieutenant, C. Schulz, D. Wong, T. Gimm, A. Bande, X. Wang, T. Petit, Role of Dopants on the Local Electronic Structure of Polymeric Carbon Nitride Photocatalysts, Small Methods, 5 (2021) 2000707.
    [24] J. Xiao, X. Liu, L. Pan, C. Shi, X. Zhang, J.-J. Zou, Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials, ACS Catalysis, 10 (2020) 12256-12283.
    [25] Y. Wang, S.Z.F. Phua, G. Dong, X. Liu, B. He, Q. Zhai, Y. Li, C. Zheng, H. Quan, Z. Li, Structure tuning of polymeric carbon nitride for solar energy conversion: from nano to molecular scale, Chem, 5 (2019) 2775-2813.
    [26] V.W.h. Lau, V.W.z. Yu, F. Ehrat, T. Botari, I. Moudrakovski, T. Simon, V. Duppel, E. Medina, J.K. Stolarczyk, J. Feldmann, Urea‐modified carbon nitrides: enhancing photocatalytic hydrogen evolution by rational defect engineering, Advanced Energy Materials, 7 (2017) 1602251.
    [27] A. Jaleel, A. Haider, C. Van Nguyen, K.R. Lee, S. Choung, J.W. Han, S.-H. Baek, C.-H. Shin, K.-D. Jung, Structural effect of Nitrogen/Carbon on the stability of anchored Ru catalysts for CO2 hydrogenation to formate, Chemical Engineering Journal, 433 (2022) 133571.
    [28] A. Pastorek, V.H. Clark, S.N. Yurchenko, S. Civiš, Time-resolved fourier transform infrared emission spectroscopy of NH radical in the X3Σ− ground state, Journal of Quantitative Spectroscopy and Radiative Transfer, 291 (2022) 108332.
    [29] M. Dignam, M. Baker, Analysis of a polarizing Michelson interferometer for dual beam Fourier transform infrared, circular dichroism infrared, and reflectance ellipsometric infrared spectroscopies, Applied Spectroscopy, 35 (1981) 186-193.
    [30] R.L. McKinley, M.P. Tornai, E. Samei, M.L. Bradshaw, Simulation study of a quasi‐monochromatic beam for x‐ray computed mammotomography, Medical Physics, 31 (2004) 800-813.
    [31] J. Ran, O. Dyck, X. Wang, B. Yang, D.B. Geohegan, K. Xiao, Electron‐Beam‐Related Studies of Halide Perovskites: Challenges and Opportunities, Advanced Energy Materials, 10 (2020) 1903191.
    [32] D.A. Czegan, D.K. Hoover, UV–visible spectrometers: versatile instruments across the chemistry curriculum, ACS Publications, 2012.
    [33] V. Karunakaran, K. Kleinermanns, R. Improta, S. Kovalenko, Photoinduced dynamics of guanosine monophosphate in water from broad-band transient absorption spectroscopy and quantum-chemical calculations, Journal of the American Chemical Society, 131 (2009) 5839-5850.
    [34] A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols, Langmuir, 14 (1998) 5011-5022.
    [35] S. Hong, T. Joo, W.I. Park, Y.H. Jun, G.-C. Yi, Time-resolved photoluminescence of the size-controlled ZnO nanorods, Applied physics letters, 83 (2003) 4157-4159.
    [36] P.M. Hare, C.E. Crespo-Hernandez, B. Kohler, Solvent-dependent photophysics of 1-cyclohexyluracil: ultrafast branching in the initial bright state leads nonradiatively to the electronic ground state and a long-lived 1nπ* state, The Journal of Physical Chemistry B, 110 (2006) 18641-18650.
    [37] M. Ghaffari, M. Shannon, H. Hui, O.K. Tan, A. Irannejad, Preparation, surface state and band structure studies of SrTi (1− x) Fe (x) O (3− δ)(x= 0–1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy, Surface science, 606 (2012) 670-677.
    [38] M.J. Davies, Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods, Methods, 109 (2016) 21-30.
    [39] W. Liang, Diamond film deposition in an inductively coupled (RF) plasma reactor, University of Idaho1995.
    [40] S.L. Stipp, M.F. Hochella Jr, Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED), Geochimica et Cosmochimica Acta, 55 (1991) 1723-1736.
    [41] D.B. Nimbalkar, V.-C. Nguyen, C.-Y. Shih, H. Teng, Melem-derived poly (heptazine imide) for Effective Charge Transport and Photocatalytic Reforming of Cellulose Into H2 and Biochemicals Under Visible Light, Applied Catalysis B: Environmental, (2022) 121601.
    [42] C. Adler, High-performance photocatalysts and photoelectrodes based on ionic carbon nitride, Universität Ulm, 2022.
    [43] P. Xia, B. Cheng, J. Jiang, H. Tang, Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst, Applied Surface Science, 487 (2019) 335-342.
    [44] J. Kröger, A. Jiménez‐Solano, G. Savasci, P. Rovó, I. Moudrakovski, K. Küster, H. Schlomberg, H.A. Vignolo‐González, V. Duppel, L. Grunenberg, Interfacial engineering for improved photocatalysis in a charge storing 2D carbon nitride: melamine functionalized poly (heptazine imide), Advanced Energy Materials, 11 (2021) 2003016.
    [45] Z. Chen, P. Sun, B. Fan, Q. Liu, Z. Zhang, X. Fang, Textural and electronic structure engineering of carbon nitride via doping with π-deficient aromatic pyridine ring for improving photocatalytic activity, Applied Catalysis B: Environmental, 170 (2015) 10-16.
    [46] C. Li, H. Wu, D. Zhu, T. Zhou, M. Yan, G. Chen, J. Sun, G. Dai, F. Ge, H. Dong, High-efficient charge separation driven directionally by pyridine rings grafted on carbon nitride edge for boosting photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 297 (2021) 120433.
    [47] M. Favaro, J. Yang, S. Nappini, E. Magnano, F.M. Toma, E.J. Crumlin, J. Yano, I.D. Sharp, Understanding the oxygen evolution reaction mechanism on CoO x using operando ambient-pressure X-ray photoelectron spectroscopy, Journal of the American Chemical Society, 139 (2017) 8960-8970.
    [48] S. Bhattacharyya, F. Ehrat, P. Urban, R. Teves, R. Wyrwich, M. Döblinger, J. Feldmann, A.S. Urban, J.K. Stolarczyk, Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots, Nature communications, 8 (2017) 1-9.
    [49] X. Xu, Z. Gao, Z. Cui, Y. Liang, Z. Li, S. Zhu, X. Yang, J. Ma, Synthesis of Cu2O octadecahedron/TiO2 quantum dot heterojunctions with high visible light photocatalytic activity and high stability, ACS applied materials & interfaces, 8 (2016) 91-101.
    [50] D. Xiang, X. Hao, X. Guo, G. Wang, K. Yang, Z. Jin, Rational Construction of Z‐Scheme Charge Transfer Based on 2D Graphdiyne (g‐CnH2n− 2) Coupling with Amorphous Co3O4 Quantum Dots for Efficient Photocatalytic Hydrogen Generation, Advanced Materials Interfaces, 9 (2022) 2201400.
    [51] J. Li, S.A. Lopez, Excited‐State Distortions Promote the Photochemical 4π‐Electrocyclizations of Fluorobenzenes via Machine Learning Accelerated Photodynamics Simulations, Chemistry–A European Journal, 28 (2022) e202200651.
    [52] M. Lenes, M. Morana, C.J. Brabec, P.W. Blom, Recombination‐limited photocurrents in low bandgap polymer/fullerene solar cells, Advanced Functional Materials, 19 (2009) 1106-1111.
    [53] C. Hau-Riege, C. Thompson, Electromigration in Cu interconnects with very different grain structures, Applied Physics Letters, 78 (2001) 3451-3453.
    [54] R. Long, J. Liu, O.V. Prezhdo, Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation, Journal of the American Chemical Society, 138 (2016) 3884-3890.
    [55] A. Wagner, B. Shollock, M. McLean, Grain structure development in directional solidification of nickel-base superalloys, Materials Science and Engineering: A, 374 (2004) 270-279.
    [56] L. Li, I.M. ul Hasan, R. He, L. Peng, N. Xu, N.K. Niazi, J.-N. Zhang, J. Qiao, Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO 2 reduction: A review, Nano Research Energy, 1 (2022) e9120015.
    [57] F. Ge, Y. Xu, Y. Zhou, D. Tian, S. Huang, M. Xie, H. Xu, H. Li, Surface amorphous carbon doping of carbon nitride for efficient acceleration of electron transfer to boost photocatalytic activities, Applied Surface Science, 507 (2020) 145145.
    [58] S. Khan, M. Sharifi, A. Hasan, F. Attar, Z. Edis, Q. Bai, H. Derakhshankhah, M. Falahati, Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction, Journal of advanced research, 30 (2021) 171-184.
    [59] A. Bieniek, A.P. Terzyk, M. Wiśniewski, K. Roszek, P. Kowalczyk, L. Sarkisov, S. Keskin, K. Kaneko, MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives, Progress in Materials Science, 117 (2021) 100743.
    [60] K. Tadyszak, M.A. Augustyniak-Jabłokow, A.B. Więckowski, L. Najder-Kozdrowska, R. Strzelczyk, B. Andrzejewski, Origin of electron paramagnetic resonance signal in anthracite, Carbon, 94 (2015) 53-59.
    [61] K. Kailasam, M.B. Mesch, L. Möhlmann, M. Baar, S. Blechert, M. Schwarze, M. Schröder, R. Schomäcker, J. Senker, A. Thomas, Donor–acceptor‐type heptazine‐based polymer networks for photocatalytic hydrogen evolution, Energy Technology, 4 (2016) 744-750.
    [62] T. Miller, A.B. Jorge, T. Suter, A. Sella, F. Corà, P. McMillan, Carbon nitrides: synthesis and characterization of a new class of functional materials, Physical Chemistry Chemical Physics, 19 (2017) 15613-15638.
    [63] A. Schwarzer, T. Saplinova, E. Kroke, Tri-s-triazines (s-heptazines)—from a “mystery molecule” to industrially relevant carbon nitride materials, Coordination Chemistry Reviews, 257 (2013) 2032-2062.
    [64] J.K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Recent advances in catalytic asymmetric construction of atropisomers, Chemical Reviews, 121 (2021) 4805-4902.
    [65] M. Hennig, J.R. Williamson, Detection of NH··· N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances, Nucleic Acids Research, 28 (2000) 1585-1593.
    [66] C. Yao, R. Wang, Z. Wang, H. Lei, X. Dong, C. He, Highly dispersive and stable Fe 3+ active sites on 2D graphitic carbon nitride nanosheets for efficient visible-light photocatalytic nitrogen fixation, Journal of Materials Chemistry A, 7 (2019) 27547-27559.
    [67] L.-L. Wen, D.-B. Dang, C.-Y. Duan, Y.-Z. Li, Z.-F. Tian, Q.-J. Meng, 1D helix, 2D brick-wall and herringbone, and 3D interpenetration d10 metal− organic framework structures assembled from pyridine-2, 6-dicarboxylic acid N-oxide, Inorganic chemistry, 44 (2005) 7161-7170.
    [68] M. Chruszcz, M.D. Chapman, L.D. Vailes, E.A. Stura, J.-M. Saint-Remy, W. Minor, A. Pomés, Crystal structures of mite allergens Der f 1 and Der p 1 reveal differences in surface-exposed residues that may influence antibody binding, Journal of molecular biology, 386 (2009) 520-530.
    [69] C. Spaeth, M. Kühn, F. Richter, U. Falke, M. Hietschold, R. Kilper, U. Kreissig, A comparative study of elastic recoil detection analysis (ERDA), electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) for structural analysis of amorphous carbon nitride films, Diamond and related materials, 7 (1998) 1727-1733.
    [70] Q. Xu, Z. Xia, J. Zhang, Z. Wei, Q. Guo, H. Jin, H. Tang, S. Li, X. Pan, Z. Su, Recent advances in solar‐driven CO2 reduction over g‐C3N4‐based photocatalysts, Carbon Energy, (2022).
    [71] D.A. Giannakoudakis, D. Łomot, J.C. Colmenares, When sonochemistry meets heterogeneous photocatalysis: designing a sonophotoreactor towards sustainable selective oxidation, Green Chemistry, 22 (2020) 4896-4905.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE