| 研究生: |
王泰翔 Wang, Tai-Siang |
|---|---|
| 論文名稱: |
銲錫接點於高速衝擊測試下之破壞行為及機制之研究 Investigation on the Fracture Behavior and Mechanism of Solder Joint under High Speed Ball Impact Test |
| 指導教授: |
林光隆
Lin, Kwang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 破壞機制 、銲錫接點 |
| 外文關鍵詞: | fracture mechanism, solder joint |
| 相關次數: | 點閱:53 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用BIT(Ball Impact Test)系統研究四種銲錫接點系統:Sn-37Pb/Au/Ni、Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga/Au/Ni(5e/Au/Ni)、Sn-1Ag-0.5Cu/Cu(SAC105/Cu)、Sn-3Ag-0.5Cu/Au/Ni(SAC305/Au/Ni)的高速衝擊破壞行為及機制,選用的衝擊速度分別為1、1.5、2 m/s。
觀察三種衝擊速度所形成之破壞面可知,Sn-37Pb/Au/Ni沿著銲錫內部產生延性破壞;5e/Au/Ni沿著銲錫、銲錫/AgZn3、AgZn3/AuZn3界面發生延性脆性混合型破壞;SAC105/Cu則穿過Cu6Sn5產生脆性破壞;SAC305/Au/Ni幾乎沿著(Cu,Ni)6Sn5/Ni基材界面產生脆性破壞。Sn-37Pb/Au/Ni、5e/Ni/Au銲錫接點之最大衝擊破壞力Fmax隨著衝擊速度增加並無明顯變化;SAC105/Cu、SAC305/Au/Ni之Fmax則隨著衝擊速度增加約略有下降的趨勢。另外,產生初始衝擊破壞所需的能量E以延性以及延性脆性混合型破壞的Sn-37Pb/Au/Ni、5e/Au/Ni較高,而脆性破壞的SAC105/Cu、SAC305/Au/Ni產生初始破壞所需的能量較小。而四種銲錫接點在達到最大衝擊破壞力所需要的時間皆隨著衝擊速度的增加而逐漸縮短。
本研究嘗試以以下列三種原因解釋破壞行為:(1)界面晶格失配(Lattice Misfit),(2)各相之間彈性係數(Young’s Modulus)差異,以及(3)不同晶體結構造成塑性變形難易度不同。Sn-37Pb/Au/Ni接點以晶體結構的影響主導了破壞的機制;5e/Au/Ni由Lattice Misfit以及晶體結構差異兩項因素影響了破壞機制;Young’s Modulus的差異和晶體結構的不同則影響了SAC105/Cu的破壞機制;而SAC305/Au/Ni的破壞機制則由上述三種原因同時主導。
本研究提供的是判斷破壞發生的原則,進一步推論出不同銲錫接點的破壞機制,對於不同的銲錫接點系統,影響破壞機制的三種因素所佔的比重可能也會有所更動,造成破壞面發生的位置或破壞模式改變。
In this study, we used high speed Ball Impact Test (BIT) system to investigate the fracture behavior and mechanism of four different kinds of solder joints: Sn-37Pb/Au/Ni、Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga/Au/Ni 、Sn-1Ag-0.5Cu/Cu、Sn-3Ag-0.5Cu/Au/Ni (denoted by 5e/Au/Ni, SAC105/Cu and SAC305/Au/Ni respectively). The impact velocities in the experiment were 1, 1.5, and 2 m/s.
The investigation on fracture morphology indicates that Sn-37Pb/Au/Ni fractured through the solder in a ductile mode, 5e/Au/Ni fractured along the solder, solder/AgZn3 and AgZn3/AuZn3 interfaces in a ductile-brittle mixed mode, while the fracture surface of SAC105/Cu passed through the Cu6Sn5 IMC and resulted in a brittle fracture; Finally, SAC305/Au/Ni exhibited a brittle failure mode with fracture surface observed at the (Cu,Ni)6Sn5/Ni substrate interface. The maximum impact force (Fmax) of Sn-37Pb/Au/Ni and 5e/Au/Ni almost remained constant in various impact velocities while that of SAC105/Cu and SAC305/Au/Ni roughly decreased with increasing impact velocity. Additionally, the energy for fracture initiation (E) of ductile fracture Sn-37Pb/Au/Ni and ductile-brittle mixed mode fracture 5e/Au/Ni were larger than brittle mode fracture SAC105/Cu and SAC305/Au/Ni solder joints. Furthermore, the time for facture initiation reduced with higher impact velocity in all solder joints.
The fracture mechanism were interpreted through: (1) Lattice Misfit, (2) The difference in Young’s Modulus of each phase in the solder joint and (3) Divergent plastic deformation arose from different crystal structure. The predominant factors which controlled the fracture mechanism of solder joints are described as follows: Crystal structure was the most important factor affecting the fracture mechanism of Sn-37Pb/Au/Ni; both Lattice Misfit and crystal structure had influence on the fracture mechanism; difference in Young’s Modulus and crystal structure simultaneously contributed to the brittle fracture of SAC105/Cu; and the brittle failure mode of SAC305/Au/Ni could be ascribed to all of the three factors. These three factors will affect the fracture mechanism to different extent.
What we provided in this study is a principle to determine the fracture initiation, and then took one step further to deduce the fracture mechanism. For different solder joint systems, there exists relative proportion of the three factors in determining the fracture mechanism and the failure mode.
1. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York (1995), pp. 1-76.
2. L. C. Shiau, C. E. Ho, and C. R. Kao, “Reactions Between Sn-Ag-Cu Lead-Free Solders and the Au/Ni Surface Finish in Advanced Electronic Packages”, Soldering and Surface Mount Technology, Vol. 14, No. 3 (2002) pp. 25-29.
3. H. T. Chen, C. Q. Wang, M. Y. Li, and D.W. Tian, “Effect of Cu Diffusion Through Ni on the Interfacial Reactions of Sn3.5Ag0.75Cu and SnPb Solders with Au/Ni/Cu Substrate During Aging”, Materials Letters, Vol. 60 (2006) pp. 1669-1672.
4. C. W. Huang and K. L. Lin, “Interfacial Reactions of Lead-Free Sn–Zn Based Solders on Cu and Cu Plated Electroless Ni–P/Au Layer Under Aging at 150 °C”, Journal of Materials Research, Vol. 19, No.12 (2004) pp. 3560-3568.
5. J. W. Yoon and S. B. Jung, “Reliability Studies of Sn-9Zn/Cu Solder Joints with Aging Treatment”, Journal of Alloys and Compounds, Vol. 407 (2005) pp. 141-149.
6. J. W. Yoon and S. B. Jung, “Solder Joint Reliability Evaluation of Sn-Zn/Au/Ni/Cu Ball-Grid-Array Package During Aging”, Materials Science and Engineering A, Vol. 452-453 (2007) pp. 46-54.
7. K. S. Kim, J. M. Yang, C. H. Yu, and H. J. Jeon, “Microstructures and Shear Strength of Interfaces Between Sn-Zn Lead-free Solders and Au/Ni/Cu UBM”, Materials Transactions, Vol. 45, No. 3 (2004) pp. 721-726.
8. H. T. Lee and Y. H. Lee, “Adhesive Strength and Tensile Fracture of Ni Particle Enhanced Sn-Ag Composite Solder Joints”, Materials Science and Engineering A, Vol. 419 (2006) pp. 172-180.
9. H. T. Lee, M. H. Chen, J. M. Jao, and T. L. Liao, “Influence of Intermetallic Compound on Fracture Behavior of Solder Joints”, Materials Science and Engineering A, Vol. 358 (2003) pp. 134-141.
10. Subassembly Mechanical Shock, JESD22-B110, JEDEC Solid State Technology Association, (March 2001).
11. Board Level Drop Test Method of Component for Handheld Electronic Products, JESD22-B110, JEDEC Solid State Technology Association, (July 2003).
12. M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi, and K. F. Kobayashi, “Mechanical Strength and Microstructure of BGA Joints Using Lead-Free Solders”, Materials Transactions, Vol. 43, No.8 (2002) pp. 1802-1807.
13. BGA Ball Shear, JESD22-B117, JEDEC Solid State Technology Association, (July 2000).
14. J. M. Koo and S. B. Jung, “Effect of Displacement Rate on Ball Shear Properties for Sn-37Pb and Sn-3.5Ag BGA Solder Joints during Isothermal Aging”, Microelectronics Reliability, Vol. 47 (2007) pp. 2169-2178.
15. J. W. Yoon, H. S. Chun, and S. B. Jung, “Interfacial Reaction and Mechanical Characterization of Eutectic Sn-Zn/ENIG Solder Joints during Reflow and Aging”, Materials Transactions, Vol. 46, No.11 (2005) pp. 2386-2393.
16. J. W. Yoon and S. B. Jung, “Interfacial Reactions and Shear Strength on Cu and Electrolytic Au/Ni Metallization with Sn-Zn Solder”, Journal of Materials Research, Vol. 21, No. 6 (2006) pp. 1590-1599.
17. T. Shoji, K. Yamamoto, R. Kajiwara, T. Morita, K. Sato, and M. Date, Proceedings of the 16th JIEP Annual Meeting (2002) pp. 97.
18. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K. N. Tu, “Ductile-to-Brittle Transition in Sn-Zn Solder Joints Measured by Impact Test”, Scripta Materialia, Vol. 51 (2004) pp. 641-645.
19. S. Ou, Y. Xu, and K. N. Tu, “Micro-Impact Test on Lead-Free BGA Balls on Au/Electrolytic Ni/Cu Bond Pad”, Proceedings of the 55th Electronic Components and Technology Conference (2005) pp. 467-471.
20. M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, “Interfacial Reactions and Impact Reliability of Sn-Zn Solder Joints on Cu or Electroless Au/Ni(P) Bond-Pads”, Journal of Materials Research, Vol. 19, No. 10 (2004) pp. 2887-2896.
21. K. T. Tsai, F. L. Liu, E. H. Wong, and R. Rajoo, “High Strain Rate Testing of Solder Interconnections”, Soldering and Surface Mount Technology, Vol. 18, No. 2 (2006) pp. 12-17.
22. Y. L. Huang, K. L. Lin, and D. S. Liu, “The Micro-Impact Fracture Behavior of Lead-free Solder Ball Joints”, Journal of Materials Research, Vol. 23, No. 4 (2008) pp. 1057-1063.
23. Y. S. Lai, J. M. Song, H. C. Chang, and Y. T. Chiu, “ Ball Impact Responses of Ni- or Ge-Doped Sn-Ag-Cu Solder Joints”, Journal of Electronic Materials, Vol. 37, No. 2 (2008) pp. 201-209.
24. C. L. Yeh, Y. S. Lai, H. C. Chang, and T. H. Chen, “Correlation Between Package-Level Ball Impact Test and Board-Level Drop Test”, Proceeding of 7th Electronics Packaging Technology Conference (2005) pp. 270-275.
25. C. L. Yeh and Y. S. Lai, Journal of Electronic Materials, “Effects of Solder Alloy Constitutive Relationships on Impact Force Responses of Package-Level Solder Joints Under Ball Impact Test”, Vol. 35, No. 10 (2006) pp. 1892-1901.
26. C. L. Yeh and Y. S. Lai, “Insights into Correlation Between Board-Level Drop Reliability and Package-Level Ball Impact Test Characteristics”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 30, No. 1 (2007) pp. 84-91.
27. Y. S. Lai, H. C. Chang, and C. L. Yeh, “Evaluation of Solder Joint Strengths Under Ball Impact Test”, Microelectronics Reliability, Vol. 47 (2007) pp. 2179-2187.
28. C. L. Yeh and Y. S. Lai, “Design Guideline for Ball Impact Test Apparatus”, Journal of Electronic Packaging, Transactions of ASME, Vol. 129 (2007) pp. 98-104.
29. C. L. Yeh and Y. S. Lai, “Support Excitation Scheme for Transient Analysis of JEDEC Board-Level Drop Test”, Microelectronics Reliability, Vol. 46 (2006) pp. 626-636.
30. G. E. Dieter, Mechanical Metallurgy, New York: McGraw-Hill (1984).
31. X. Long, I. Dutta, V. Sarihan, and D. R. Frear, “Deformation Behavior of Sn-3.8Ag-0.7Cu Solder at Intermediate Strain Rates: Effect of Microstructure and Test Conditions”, Journal of Electronic Materials, Vol.37, No.2 (2008) pp. 189-200.
32. F. Lang, H. Tanaka, O. Munegata, T. Taguchi, and T. Narita, Materials, “The Effect of Strain Rate and Temperature on the Tensile Properties of Sn-3.5Ag Solder”, Materials Characterization Vol. 54 (2005) pp. 223-229.
33. T. G. Hsuan, Department of Materials Science and Engineering, NCKU, unpublished.
34. 張烜琥, 多種錫鉛及無鉛銲錫材料之動態衝擊特性研究, 國立成功大學碩士論文, 民國九十六年, pp. 102.
35. K.S. Kim, S.H. Huh, and K. Sugamuma, “Effects of Cooling Speed on the Microstructure and Tensile Properties of Sn-Ag-Cu Alloys”, Materials Science and Engineering A, Vol. 333 (2002) pp. 106-114.
36. H. Okamoto and S. D. Henry, Alloy Phase Diagrams, ASM, Handbook, Vol. 3, pp. 40.
37. P. T. Vianco, J. A. Rejent, and P. F. Hlava, “Solid-State Intermetallic Compound Layer Growth Between Copper and 95.5Sn-3.9Ag-0.6Cu Solder”, Journal of Electronic Materials, Vol.33, No.9 (2004) pp. 991-1003.
38. T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Morphology, Kinetics, and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu”, Journal of Materials Research, Vol.17, No.2, Feb (2002) pp. 291-301.
39. Y. D. Jeon, S. Nieland, A.Ostamann, H. Reichl, and K. W. Paik, “A Study on Interfacial Reactions Between Electroless Ni-P Under Bump Metallization and 95.5Sn-4.0Ag-0.5Cu Alloy”, Journal of Electronic Materials, Vol.32 (2003) pp. 548-557.
40. C. W. Hwang, K. Suganuma, M. Kiso, and S. Hashimoto, “Influence of Cu Addition to Interface Microstructure Between Sn-Ag Solder and Au/Ni-6P Plating”, Journal of Electronic Materials, Vol.33 (2004) pp. 1200-1209.
41. D. G. Kim, J. W. Kim, and S. B. Jung, “Effect of aging conditions on interfacial reaction and mechanical joint strength between Sn-3.0Ag-0.5Cu solder and Ni–P UBM”, Materials Science and Engineering B, Vol.121 (2005) pp. 204-210.
42. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys. CRC Press (1992).
43. S. Ahat, M. sheng, and L. Luo, “Microstructure and Shear Strength evolution of SnAg/Cu Surface Mount Solder Joint During Aging”, Journal of Electronic Materials, Vol. 30, No. 10 (2001) pp. 1317-1322.
44. K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and its Effect on Joint Reliability”, Journal of Applied Physics, Vol.97 (2005) 024508.
45. Donald R. Askeland, The Science and Engineering of Materials, 3rd edition , PWS Publishing Company, Boston, MA (1994).
46. R. W. G. Wyckoff. Crystal Structure 1, 2nd edition, Interscience Publisher, New York, New York (1963) pp. 7-83.
47. Nowotny, Schubert, Metallforschung 1/2, Vol. 23 (1946).
48. E. R. Jette and F. Foote, “Precision Determination of Lattice Constants”, Journal of Chemical Physics, Vol. 3 (1935) pp. 605-616.
49. T. B. Massalski, Binary Alloy Phase Diagrams, Vol. 1, American Society for Metalls, Metals Park, Ohio (1986) pp. 338-339.
50. K. Gotzmann, U. Burkhardt, M. Ellner, and Yu. Grin, Power Diffraction, Vol. 12 (1997) pp. 248-251.
51. A. K. Larsson, L. Stenberg, and S. Lidin, “The Superstructure of Domain-Twinned η’-Cu6Sn5”, Acta Crystallographica Section B, Vol. 50 (1994) pp. 636-643.
52. I. K. Suh, H. Ohta, Y. Waseda, Journal of Materials Science, Vol. 23 (1988) 757-760.
53. Y. D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K. Y. Paik, “A Study on Interfacial Reactions Between Electroless Ni-P Under Bump Metallization and 95.5Sn-4.0Ag-0.5Cu Alloy”, Journal of Electronic Materials, Vol. 32 (2003) pp. 548-557.
54. T. Shibutani, Q. Yu, and M. Shiratori, “A Study of Deformation Mechanism during Nanoindentation Creep in Tin-Based Solder Balls”, Journal of Electronic Packing, Vol. 129 (2007) pp. 71-75.
55. H. Tanaka, L. F. Qun, O. Munekata, T. Taguchi, and T. Narita, “Elastic Properties of Sn-Based Pb-Free Solder Alloys Determined by Ultrasonic Pulse Echo Method”, Materials Transactions, Vol. 46, No. 6 (2005) pp. 1271-1273.
56. John H. Lau, Solder Joint Reliability, Van Nostrand Reinhold (1990) pp. 455-477.
57. John H. Lau and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGrawHill (1997) pp. 132-147.
58. G. Y. Jang, J. W. Lee, and J. G. Duh, “The Nanoidentation Characteristic of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds in the Solder Bump”, Journal of Electronic Materials, Vol. 33, No.10 (2004) pp. 1103-1110.
59. G. Ghosh, “Elastic Properties, Hardness, and Indentation Fracture Toughness Intermetallic Relevant to Electronic Packaging”, Journal of Material Research, Vol. 19, No. 5 (2004) pp. 1439-1454.
60. R.J. Fields, S.R. Law Ⅲ, and G.K. Lucey, Jr., The Metal Science of Joining, edited by M. J. Cieslak, J. H. Perepezko, S. Kang, and M. E. Glicksman, TMS, Warrendale, PA (1992) pp. 165-173.
61. D. R. Frear, S. N. Burchett, H. S. Morgan and J. H. Lau, eds., The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, New York (1994), pp. 60.
62. Luhua. Xu and John H. L. Pang, “Nanoindentation on SnAgCu Lead-Free Solder Joints and Analysis”, Journal of Electronic Materials, Vol. 35, No. 12 (2006) pp. 2107-2115.
63. Robert B. Ross, Metallic Materials Specification Handbook 4th edition, Chapman and Hall, New York (1992).
64. K. M. Kumar, V. Kripesh, L. Shen, K. Zeng, and Andrew A.O. Tay, “Nanoindentation Study of Zn-Based Pb Free Solders used in Fine Chip Interconnect Applications”, Materials Science and Engineering A, Vol. 423 (2006) pp. 57-63.
65. W. Koster and W. Rauscher, National Advisory Committee for Aeronautics, Technical Memorandum Vol. 1321 (1951) pp. 32-33.
66. W. Hayden, W. G. Moffat, and J. Wulff, Mechanical Behavior, 3rd edition, Wiley Eastern private limited, New Delhi (1974) pp. 36.
67. X. Deng, M. Koopman, N.Chawla, and K. K. Chawla, “Young’s Modulus of (Cu, Ag)-Sn Intermetallics Measured by Nanoindentation”, Materials Science and Engineering A, Vol. 364 (2004) pp. 240-243.
68. W. D. Callister, Introduction to Materials Science and Engineering, Wiley, New York (2002).
69. D. Suh, D. W. Kim, P Liu, H Kim, J. A. Weninger, C. M. Kumar, A. Prasad, B. W. Grimsley, and H. B. Tejada, “Effects of Ag Content on Fracture Resistance of Sn-Ag-Cu Lead-Free Solders under High-Strain Rate Conditions”, Materials Science and Engineering A, Vol. 460-461 (2007) pp. 595-603.
70. B. Subrahmanyan, “Elastic Moduli of Some Complicated Binary Alloy Systems”, Transactions - Japan Institute of Metals, Vol.130 (1972) pp. 93-95.
71. R. R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis, “Nanoidentation Measurements on Cu-Sn and Ag-Sn Intermetallics Formed in Pb-Free Solder Joints”, Journal of Material Research, Vol. 18, No. 9 (2003) pp. 2251-2261.
72. R. Cabarat, L. Gullet, and R. LeRouz, J. Inst. Met., Vol.75 (1975) pp. 391.
73. L. M. Ostrovskaya, V. N. Rodin, and A. I. Kuznetsov, Sov. J. Non-Ferrous Metall. (Tsv. Metally), Vol. 26 (1985) p. 90.
74. C. Kanchanomai, Y. Miyashita and Y. Mutoh, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of Electronic Materials, Vol.31 (2002) pp. 456-465.
75. L. Xu and John H. L. Pang, “Nano-indentation Characterization of Ni-Cu-Sn IMC Layer Subjected to Isothermal Aging", Thin Solid Film, Vol. 504 (2006) pp. 362-366.
76. N. S. Liu and K. L. Lin, “Microstructure and Mechanical Properties of Low Ga content Sn-8.55Zn-0.5Ag-0.1Al-xGa Solders”, Scripta Materialia, Vol. 52 (2005) pp. 369-374.
77. K. I. Chen and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys-The Effect of Ga”, Journal of Electronic Materials, Vol. 32, No. 10 (2003) pp. 1111-1116.
78. K. I. Chen, S. C. Cheng, S. Wu, and K. L. Lin, “Effects of Small Additions of Ag, Al, and Ga on the Structure and Properties of the Sn–9Zn Eutectic Alloy”, Journal of Alloys and Compounds, Vol. 416 (2006) pp. 98-105.
79. C. L. Yeh, Y. S. Lai, H. C. Chang, and T. H. Chen, “Empirical Correlation between Package-level Ball Impact Test and Board-level Drop reliability”, Microelectronics Reliability, Vol. 47, No. 7 (2007) pp. 1127-1134.
80. Marc. A. Meyers, Dynamic Behavior of Materials, John Wiley and Sons, New York (1994) pp. 323-381.