簡易檢索 / 詳目顯示

研究生: 徐晏婷
Hsu, Yen-Ting
論文名稱: 脈動式管流初始不穩定現象之流場控制
Flow control on the initial instabilities in pulsating pipe flow
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 脈動式管流反曲點流動不穩定性混合層流模型邊界層Rayleigh instability criterionTrip wire
外文關鍵詞: Pulsating pipe flow, Inflection point, Flow instability, Mixing layer model, Boundary layer, Rayleigh instability criterion, Trip wire
相關次數: 點閱:121下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在針對脈動式管流中之初始不穩定現象進行探討,並嘗試加入一人為變因(粗糙元),改變邊界層厚度以達到流場控制的效果。透過馬達驅動位於下游之流場控制器旋轉,使流場速度隨時間呈脈動式變化,再利用熱線測速儀量測流場速度,並依據流場控制器之光電輸出信號做流速相位平均(phase-average),比較不同相位的流速分佈曲線,探討在一個脈動週期內之流場變化趨勢,再以總體經驗模態分離法(ensemble empirical mode decomposition) 去除背景雜訊,將擾動分量擷取出來,以希爾伯特-黃轉換(Hilbert-Huang Transform) 及小波轉換(wavelet transform) 來分析初始不穩定擾動之特徵頻率,並根據Rayleigh instability criterion 所述之發生不穩定性之必要條件,觀察速度一次微分曲線圖之反曲點位置的變化及邊界層發展的情形,同時利用混合層流模型(mixing layer model) 和黏性效應(viscous effect) 之觀點予以解釋,並釐清致使初始擾動發生的機制。
    在這項研究中,亦透過不同線徑之金屬絲(粗糙元) 來觀察管內之流體流動行為,不同實驗條件下的結果顯示流動的不穩定現象亦是受到非黏性或黏性機制所影響。此外,加裝金屬絲可以有效的改變邊界層之發展狀況,進而影響非定常速度剖面中反曲點形成的位置,藉此觀察不穩定性發展所受到的改變,經由測試結果說明了安裝金屬絲控制流動不穩定性的有效性,最後再利用上述分析方法找出擾動特徵並與前期實驗結果進行詳細的討論。

    This study is aimed at investigating the initial instability in pulsating pipe flow with installing a trip wire at the inlet to manipulate the control of flow instability. The pulsation of pipe flow was produced by a flow regulator situated downstream of the pipe flow, which was driven by a servo motor and monitored by an optical sensor. The instantaneous velocity information at a point in the flow field was obtained by a boundary-layer type hot-wire probe, then phase-averaged according to the output signals of the optical sensor mentioned. For data analysis, the method of Ensemble Empirical Mode Decomposition (EEMD) was employed to extract the disturbance component due to flow instability from the phase-averaged signal trace studied. Then, we employed either Hilbert-Huang Transformation or Wavelet Transformation to obtain the characteristic frequency of the initial unstable disturbance. Moreover, a phase-averaged velocity profile was smoothened by a six-order regression curve, subsequently the inflection points were identified. Then, the flow instability observed was examined with the Rayleigh instability criterion based on a mixing-layer model. By this procedure, one was able to identify the cases of which the flow instability characteristics are complied with the mixing-layer model, which is referred to the inviscid mechanism. Otherwise, the cases not agreed with the inviscid model would be considered due to the viscous effect.
    In this study, experimental results obtained with different trip wires under a number of pulsating flow conditions confirm that the flow instability phenomenon observed in the developing region could be due to the inviscid or viscous mechanism. Moreover, the installation of a trip wire could effectively alter the development of boundary layer, therefore affected the locations of the inflection points in the unsteady velocity profile.
    As a consequence, the development of flow instability was affected pronouncedly, that the flow instability could be initiated at further upstream location due to either of inviscid or viscous mechanism. The present results illustrate the effectiveness of installing a trip wire to control of flow instability, based on which detailed discussion was carried out concerning the situations associated with the inviscid mechanism and those with the viscous mechanism.

    摘要i 致謝xiv 目錄xv 表目錄xvii 圖目錄xviii 符號說明xxii 第一章 緒論 1 1.1. 前言 1 1.2. 研究動機與目的 1 1.3. 文獻回顧 2 1.3.1. 層紊流轉換 2 1.3.2. 管流分類 3 1.3.3. 非黏性穩定性理論(Inviscid-stability Theory) 7 1.3.4. 黏性穩定性理論(Viscous-stability Theory) 9 第二章 實驗設備 10 2.1. 開放式管流設備 10 2.2. 流場控制器(Flow controller) 10 2.3. 壓力孔(Pressure tap) 11 2.4. 壓力轉換器(Pressure transducer) 11 2.5. 壓力微測計 12 2.6. 熱線測速儀系統 12 2.6.1. 熱線探針 12 2.6.2. 定溫型熱線測速儀 12 2.7. 訊號擷取系統 13 2.8. 金屬絲(Trip wire) 14 第三章 實驗量測與訊號分析方法 15 3.1. 流場基本量測方法 15 3.2. 實驗參數 15 3.2.1. Womersley number 15 3.2.2. 時間平均流速雷諾數(ReU) 16 3.2.3. 速度震盪雷諾數(Rem) 16 3.3. 相位平均方法 17 3.4. 速度剖面Curve fitting 方式 17 3.5. 希爾伯特-黃轉換(Hilbert-Huang Transform) 17 3.5.1. 經驗模態分離法(Empirical Mode Decomposition) 18 3.5.2. 加總經驗模態分離法(Ensemble Empirical Mode Decomposition) 19 3.5.3. Hilbert transform(HT) 20 3.6. 小波轉換(Wavelet Transform) 20 3.7. 週期分析 21 3.8. 無因次頻率計算 22 第四章 實驗結果與討論 23 4.1. 流場基本特性 23 4.2. 實驗項目說明 24 4.3. 二維擾動特性 24 4.4. 擾動之相位分佈與成長 25 4.4.1. 相位差比較 27 4.5. 反曲點位置的判斷 28 4.6. 二維擾動能量分佈與反曲點位置比較 29 4.7. 擾動之特徵頻率 30 4.7.1. 無因次化頻率比較 31 4.7.2. 週期頻率比較 31 4.8. 金屬絲對流場的影響 32 4.8.1. 軸向量測 33 4.8.2. 邊界層發展之比較 33 第五章 結論與未來建議 35 5.1. 結論 35 5.2. 未來工作與建議 36 參考文獻 38 附錄 106

    [1] O. Reynolds,“An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels,”Philosophical Transactions of the Royal Society of London, vol. 174, pp. 935–982, 1883.
    [2] 黃日暉, 應用MEMS熱模感測器於非定常管流層紊流轉換之初始
    發展探討. 碩士論文, 國立成功大學, 2010.
    [3] 羅洪森, 應用MEMS熱模感測器與希爾伯特黃轉換分析脈動式管
    流之初始不穩定現象. 碩士論文, 國立成功大學, 2010.
    [4] 劉昊, 脈動式管流之初始不穩定現象探討. 碩士論文, 國立成功大學, 2011.
    [5] 戴君毅, 脈動式管流初始不穩定之現象探討. 碩士論文, 國立成功大學, 2013.
    [6] 簡廷瑋, 脈動式管流初始不穩定之現象探討. 碩士論文, 國立成功大學, 2014.
    [7] 王仁暉, 脈動式管流初始不穩定現象研究. 碩士論文, 國立成功大學, 2015.
    [8] H. B. Squire,“On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 142, no. 847, pp. 621–628, 1933.
    [9] K. P.S.Klebanoff,“Evolution of amplified waves leading to transition in a boundary layer eith zero pressure gradient,”NASA Technical note D-195, no. 22, 1959.
    [10] P. Klebanoff, K. Tidstrom, and L. Sargent, “The three-dimensional nature of boundary-layer instability,” Journal of Fluid Mechanics, vol. 12, no. 1, pp. 1–34, 1962.
    [11] F. M.White, Viscous fluid flow. third edit ed., 2006.
    [12] B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerweel, “Turbulence transition in pipe flow,” Annual Review of Fluid Mechanics, vol. 39, no. 1, pp. 447–468, 2007.
    [13] I. J. Wygnanski and F. H. Champagne,“On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug,”Journal of Fluid Mechanics, vol. 59, no. 2, pp. 281–335, 1973.
    [14] M. Iguchi, M. Ohmi, and Y. Fujii,“Behavior of turbulent slug in a transient pipe flow.pdf,”JSME International Journal, vol. 32, no. 3, pp. 340–347, 1989.
    [15] S. He and J. D. Jackson,“A study of turbulence under conditions of transient flow in a pipe,”Journal of Fluid Mechanics, vol. 408, pp. 1–38, 2000.
    [16] K. Nishihara, Y. Nakahata, Yoshiaki UEDA, Charles W. Knisely, Y. Sasaki, and M. Iguchi, “Effect of initial acceleration history on transition to turbulence in pipe flow,”Journal of JSEM, vol. 10, pp. 20–25,2010.
    [17] D. Greenblatt and E. A. Moss,“Pipe-flow relaminarization by temporal acceleration,”Physics of Fluids, vol. 11, no. 11, pp. 3478–3481, 1999.
    [18] J.R. Womersley,“Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,”J.Physiol, vol. 127, pp. 553–563, 1955.
    [19] S. Uchida,“The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe,” Journal of the Physical Society of Japan, vol. 7, no. 5, pp. 403–422, 1956.
    [20] M. Iguchi, I. Urahata, and M. Ohmi,“Turbulent slug and velocity field in the inlet region for pulsatile pipe flow,” The Japan Society of Mechanical Engineers, vol. 30, no. 261, pp. 414–422, 1987.
    [21] L. Shemer,“Laminar-turbulent transition in a slowly pulsating pipe flow,” Physics of Fluids, vol. 28, no. 12, pp. 3506–3509, 1985.
    [22] S. I. Sergeev, “Fluid oscillations in pipes at moderate Reynolds numbers,”Mekhanika Zhidkosti i Gaza, vol. 1, no. 1, pp. 121–122, 1966.
    [23] M. Hino, M. Sawamoto, and S. Takasu, “Experiments on transition to turbulence in an oscillatory pipe flow,” Journal of Fluid Mechanics, vol. 75, no. 2, pp. 193–207, 1976.
    [24] P. Merkli and H. Thomann,“Transition to turbulence in oscillating pipe flow,”Journal of Fluid Mechanics, vol. 68, no. 03, pp. 567–575, 1975.
    [25] T. Sarpkaya,“Coherent structures in oscillatory boundary layers,”Journal of Fluid Mechanics, vol. 253, pp. 105–140, 1993.
    [26] P. Costamagna, G. Vittori, and P. Blondeaux, “Coherent structures in oscillatory boundary layers,” Journal of Fluid Mechanics, vol. 474, pp. 1–33, 2003.
    [27] J. A. Miller and A. A. Fejer,“Transition phenomena in oscillating boundary-layer flows,” Journal of Fluid Mechanics, vol. 18, no. 3, pp. 438–448, 1964.
    [28] H. J. Obremski and a. a. Fejer,“Transition in oscillating boundary layer flows,”Journal of Fluid Mechanics, vol. 29, no. 01, pp. 93–111, 1967.
    [29] M. Gad-El-Hak and J. Mcmurray,“On the stability of the decelerating laminar boundary layer,”Journal of Fluid Mechanics, vol. 138, pp. 297–323, 1984.
    [30] M. Iguchi and M. Ohmi,“Transition to turbulence in a pulsatile pipe flow part2, Characteristics of reversing flow accompanied by relaminarization,”The Japan Society of Mechanical Engineers, vol. 25, no. 208,pp. 1529–1536, 1982.
    [31] M. Ohmi, M. Iguchi, and I. Urahata,“Transition to turbulence in a pulsatile pipe flow Part1, Wave forms and distribution of pulsatile velocities near transition region,”Bulletin of JSME, vol. 25, no. 200, pp. 182–189,
    1982.
    [32] L. Rayleigh,“On the stability or instability of certain fluid motions,”Proc. Lond. Maths. Soc., pp. 57–72, 1880.
    [33] J. J. Miau, R. H. Wang, T. W. Jian, and Y. T. Hsu,“An investigation into inflection-point instability in the entrance region of a pulsating pipe flow,”Proceedings of the Royal Society A, 2016.
    [34] W. R. Drazin, P.G.,“Hydrodynamic stability,”Cambridge Univ.Press,London, 1981.
    [35] R. Fjørtoft,“Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex,”1950.
    [36] C.-C. Lin, The theory of hydrodynamic stability. 1955.
    [37] W. Orr,“The stability or instability of the steady motions of a perfect liquid and of a viscous liquid,” Proceedings of the Royal Irish Academy. Section A., vol. 27, pp. 9–68, 1907.
    [38] A. Sommerfeld,“Ein beitrag zur hydrodynamischen erklaerung der turbulenten fluessigkeitsbewegungen,” Proceedings of the 4th International Congress of Mathematicians III, vol. 3, pp. 116–124, 1908.
    [39] W. Tollmien, “Über die entstehung der turbulenz,” Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, pp. 21–44, 1929.
    [40] H. Schlichting, Zur enstehung der turbulenz bei der plattenströmung. nachr. ges ed., 1933.
    [41] W. K. George, P. D. Beuther, and A. Shabbir,“Polynomial calibrations for hot wires in thermally varying flows,” Experimental Thermal and Fluid Science, pp. 230–235, 1989.
    [42] N. E. Huang, Z. Shen, and S. R. Long,“A new view of nonlinear waterwaves: The Hibert spectrum 1,”Annual Review of Fluid Mechanics,vol. 31, no. 1, pp. 417–457, 1999.
    [43] N. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, and H. Liu,“The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,”Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903–995, 1998.
    [44] B. Boashash,“Estimating and interpreting the instantaneous frequency of a signal - Part 1: Fundamentals,” Proceedings of the IEEE, vol. 80, no. 4, pp. 520–538, 1992.
    [45] B. Boashash,“Estimating and interpreting the instantaneous frequency of a signal - part 2: Algorithms and applications,”Proceedings of the IEEE, vol. 80, no. 4, pp. 540–568, 1992.
    [46] Zhaohua Wu and N. E. Huang, “Ensemble empirical mode decomposition:A noise-assisted data analysis method,” World Scientific, vol. 1,no. 1, pp. 1–41, 2009.
    [47] N. E. Huang and Z. Wu,“A review on Hilbert-Huang transform :Method and its applications to geophysical studies,”Reviews of Geophysics,vol. 46, pp. 1–23, 2008.
    [48] P. Monkewitz and P. Huerre,“Influence of the velocity ratio on the spatial instability of mixing layers,”Physics of Fluids, vol. 25, no. 7, 1982.
    [49] C. W. Knisely, K. Nishihara, and M. Iguchi,“Critical Reynolds number in constant-acceleration pipe flow from an initial steady laminar state,”Journal of Fluids Engineering, vol. 132, no. 091202, pp. 1–4, 2010.
    [50] C. von Kerczek and S. H. Davis,“Linear stability theory of oscillatory stokes layers,”Journal of Fluids Engineering, vol. 62, no. part4, pp. 753–773, 1974.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE