簡易檢索 / 詳目顯示

研究生: 陳駿
Chen, Chun
論文名稱: 環境水體中多氯戴奧辛及呋喃之高解析氣相層析儀/高解析質譜儀分析方法建立
Establishment of a HRGC/HRMS Method for the Analysis of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Environmental Water
指導教授: 黃福永
Huang, Fu-Yung
廖寶琦
Liao, Pao-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 124
中文關鍵詞: 環境水體泡棉二聯苯呋喃多氯二聯苯戴奧辛偵測下限
外文關鍵詞: PUF, detection limit, environmental water, PCDFs, PCDDs
相關次數: 點閱:142下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於戴奧辛是屬於疏水性化合物,其在環境水體中之濃度範圍僅介於10-12~10-15 g/L,導致分析環境水體中的多氯二聯苯戴奧辛及二聯苯呋喃極具挑戰性。本研究參考環檢所公告方法-NIEA M801.11B,利用固液萃取原理,將水體經用玻璃纖維濾紙過濾後,以每分鐘0.8~0.9 公升的流速將水體中戴奧辛吸附於泡棉(PUF)上,再經過索氏萃取、濃縮、淨化等程序,最後以高解析氣相層析儀及高解析質譜儀來分析水中超微量戴奧辛。本研究目的如下:(1)藉由添加已知濃度標準品方式來討論不同實驗階段標準品回收情形;(2)藉由樣本重複分析的再現性來探討本分析方法的精確度;(3)透過文獻比較方式來探討本分析方法的靈敏度、空白背景值、二重複分析精確度之優劣。測試結果在自來水的四重複分析實驗所得到的十七種多氯二聯苯戴奧辛及二聯苯呋喃精確度範圍為1~4%,其準確度在90%以上。而二次蒸餾水水中標準品添加回收率只在50~81%,經實驗證實是因為標準品無法有效溶解於水中而吸附於玻璃容器上,本研究參考文獻中的方法,將採樣管管件更改為不鏽鋼及高密度矽膠材質,同時以不透過容器而直接將水中多氯二聯苯戴奧辛及二聯苯呋喃濃縮於泡棉上,提升了10~21%的水中標準品添加回收率。在測試方法靈敏度的部份,經40公升採樣體積提升到600公升的結果,證實可有效提升方法靈敏度,如取600公升水體的分析得到的方法偵測下限為0.0001~0.0003pg/L,比美國環保署使用的吸附材質XAD-2低5~10倍,因為泡棉優勢在於通透性佳,所以可以用比XAD-2快1倍的速率濃縮大體積水體,同時泡棉有很低的空白背景值,分析低濃度水體較無干擾問題。本研究測得的自來水體十七種多氯二聯苯戴奧辛及二聯苯呋喃總毒性當量平均濃度為0.013pg /L(WHO-TEQ)(n=8),此結果相當接近環檢所發表的自來水體中十七種多氯二聯苯戴奧辛及二聯苯呋喃總毒性當量平均濃度0.012pg /L(WHO-TEQ),如將此結果依據美國環保署訂定可接受的上限潛在致癌因子(upper-limit carcinogenic potency factor for human)來估算國人飲用自來水體的致癌機率,求得其機率僅約為10-6。同時此濃度也遠低於政府將設立飲用水中氯二聯苯戴奧辛及二聯苯呋喃總毒性當量管制標準值12 pg /L(WHO-TEQ)有千倍之多。

    Due to that the hydrophobic property, the concentration of PCDD/Fs solubility in environmental water is around 10-12~10-15 pg/L, which makes the analysis a tough challenge. In this study, we had developed a set up and method based on the principle of solid-liquid extraction setting by EPA(Environmental Protection Agency)-NIEA M801.11B for the analysis of water. The water was first filtered through a glass fiber membrane, followed by pumping through a column packed with PUF at a rate of 0.8~0.9L/min to absorb the PCDD/Fs. The PCDD/Fs absorbed on PUF were extracted by using Soxhlet extractor followed by concentration and purification, then subjected to HRGC/HRMS analysis.This study was aiming at: i) Assess the recovery yield by adding standard solution at various check points; ii) Assess the experimental precision by repeating the analysis; iii) Compare the results with the reported data to evaluate the feasibility and reliability of this set up and method.The results of this study were showed as below. The precision of four times analysis repetition was within 1~4% and the accuracy was over 90%. The recovery yield of the adding standard sample was low, attributing to the low solubility of sample in double distilled water as to be absorbed on the surface of glass container. To solve this problem the water specimen was collected directed and using PUF to absorb the Dioxin in the scene without using glass container and the pipes of the set up were replaced with stainless steel or high density silica gel material made pipes. This improved 10~20% increase in recovery yield. We also found that with the increase of sample volume, >600L , the sensitivity increased and the detection limit was 0.0001~0.0003pg/L, which was five to ten times lower than that reported by USEPA using XAD-2 as the adsorbent. Using PUF as the adsorbent, the sampling time was only half of that by using XAD-2 and there was low blank concentration when repeating use, indicating this method can be applied to analyze water with low concentration(ppt~ppq).The average concentration of PCDD/Fs detected with this method for water collected from different area in Taiwan was 0.013 pg /L (WHO-TEQ), which was similar to the value reported by EPA 0.012 pg /L(WHO-TEQ). This result also showed that the probability to cause cancer by drinking the tap water in Taiwan is about one of 106 based on the upper-limit carcinogenic potency factor for human setting by USEPA and this concentration is also much lower than the limit concentration of PCDD/Fs in drinking 12pg/L(WHO-TEQ)that will be published by Taiwan Government.

    中文摘要 I Abstract III 誌謝 V 目錄 VII 英文縮寫名稱之全名及中文翻譯 XIII 附表52 附圖77 附錄118 一、前言1 二、文獻回顧3 2-1多氯二聯苯戴奧辛及二聯苯呋喃之物理化學性質 3 2-2多氯二聯苯戴奧辛及二聯苯呋喃之環境流佈4 2-3各國環境水體管制標準5 2-3-1戴奧辛廢水排放的管制現況5 2-3-2飲用水中戴奧辛的管制現況5 2-4各國水質分析公告方法6 2-4-1粒狀相戴奧辛的過濾方式 6 2-4-2溶解相戴奧辛的過濾方式 7 2-4-3各類濃縮萃取方法優缺點比較9 2-4-4環境水體組成成份及分析效應11 2-5管柱層析淨化原理13 2-5-1水樣中的混合物與靜相及動相的分配理論13 2-5-2改變酸鹼度對於吸附劑的影響14 2-6水體中的戴奧辛致癌風險評估15 三、實驗設計與實驗流程18 3-1實驗設計18 3-1-1基質標準品的添加回收率測試18 3-1-2探討分析方法的精確度與準確度19 3-1-3品質保證的重要指標評估20 3-2實驗設備與材料22 3-2-1採樣吸附材料22 3-2-2淨化分析材料22 3-2-3儀器設備及耗材24 3-3實驗分析方法25 3-3-1大體機水質吸附濃縮裝置組裝25 3-3-2水樣前濃縮過濾程序26 3-3-3萃取與酸洗步驟26 3-3-4淨化步驟28 3-3-5儀器分析29 3-3-6定量及定性程序30 四、結果與討論33 4-1多氯二聯苯戴奧辛及二聯苯呋喃定性及定量結果33 4-2添加基質標準品的回收率測試結果33 4-2-1不同實驗階段添加基質標準品之測試結果33 4-2-2泡棉過濾海水前添加基質標準品的回收率測試結果34 4-2-3二次蒸餾水中添加回收率偏低的問題原因探討及改善34 4-2-4水樣過濾前的泡棉中添加回收率偏高的問題原因探討及改善36 4-3分析方法的精確度與準確度 37 4-3-1方法的精確度測試37 4-3-2方法的準確度測試38 4-4品質保證的重要指標評估結果38 4-4-1背景濃度干擾測試38 4-4-2水樣二重複分析的精確度測試40 4-4-3自來水添加基質標準品回收率測試41 4-4-4偵測下限評估42 4-4-5自來水中十七種多氯二聯苯戴奧辛及二聯苯呋喃的同源物濃度特徵比較43 五、結論及建議45 5-1結論45 5-2建議46 參考文獻47 附表52 【表2-1】多氯二聯苯戴奧辛及二聯苯呋喃之物化性質53 【表2-2】多氯二聯苯戴奧辛及二聯苯呋喃毒性當量因子54 【表2-3】戴奧辛廢水排放的各國管制規範55 【表2-4】世界各國的飲用水中戴奧辛的管制規範56 【表2-5】各國水質分析公告方法57 【表2-6】四種吸附濃縮方法比較58 【表2-7】飲用水中戴奧辛濃度與致癌風險評估表59 【表3-1】戴奧辛檢量標準品溶液之濃度表60 【表3-2】多氯二聯苯戴奧辛及二聯苯呋喃之監測離子質量61~62 【表3-3】多氯二聯苯戴奧辛及二聯苯呋喃之離子強度比及比值規範範圍63 【表4-1】不同實驗階段添加測試回收率結果64 【表4-2】二次蒸餾水添加標準品之溶解程度與回收率實驗65 【表4-3】二次蒸餾水添加標準品之各段回收率66 【表4-4】影響添加回收率的相關因子之濃度值67 【表4-5】本研究方法精確度69 【表4-6】本研究方法準確度70 【表4-7】不同研究方法精確度及準確度比較71 【表4-8】不同分析條件下的背景濃度比較72 【表4-9】環檢所及崑山科技大學與本方法異同處73 【表4-10】水樣濃度與扣除背景濃度後的水樣濃度比較74 【表4-11】自來水樣添加回收率測試結果75 【表4-12】標準品與自來水中的PCB169及PeCDD之M+2及M+4面積76 附圖77 【圖2-1】多氯二聯苯戴奧辛及二聯苯呋喃之結構78 【圖2-1】戴奧辛主要進入水體的機制78 【圖2-3】水中粒狀相有機碳及溶解性有機碳成份79 【圖2-4】戴奧辛與粒狀相碳氫化合物結合機制80 【圖2-5】戴奧辛與溶解相碳氫化合物結合機制81 【圖2-6】不同吸附材料的結構式82 【圖2-7】液-液、XAD-2、PUF的萃取比較實驗圖示83 【圖2-8】不同環境水體中有機碳含量比例84 【圖2-9】河水中溶解性有機碳成份85 【圖2-10】pH值影響溶解性有機碳吸附於吸附劑上的效能85 【圖2-11】美國環保署之污染評估計畫使用的濃縮過濾系統86 【圖2-12】管柱層析圖示87 【圖2-13】矽膠及氧化鋁結構與其作用力圖示87 【圖2-14】吸附劑極性大小趨勢圖88 【圖2-15】水樣中混合物的極性大小趨勢圖88 【圖2-16】移動相分離混合物的圖示89 【圖2-17】移動相的極性大小趨勢圖90 【圖3-1】實驗設計流程圖91 【圖3-2】Masslynx4.0雜訊的取樣方式92 【圖3-3】實驗分析流程圖93 【圖3-4】大體積水質吸附濃縮裝置組裝94 【圖3-5】索氏萃取流程95 【圖3-6】酸洗流程95 【圖3-7】酸性矽膠管柱淨化流程96 【圖3-8】酸性氧化鋁管柱淨化流程96 【圖3-9】矽酸鎂管柱淨化流程 97 【圖3-10】檢量線的建立圖示98 【圖3-11】待測戴奧辛的定量公式圖示99 【圖4-1】四氯二聯苯戴奧辛及二聯苯呋喃層析圖譜100 【圖4-2】五氯二聯苯戴奧辛及二聯苯呋喃層析圖譜101 【圖4-3】六氯二聯苯戴奧辛及二聯苯呋喃層析圖譜102 【圖4-4】七氯二聯苯戴奧辛及二聯苯呋喃層析圖譜103 【圖4-5】八氯二聯苯戴奧辛及二聯苯呋喃層析圖譜104 【圖4-6】方法校正後所估計的二次蒸餾水中添加回收率105 【圖4-7】方法校正前後及不同時間添加之標準品回收率比較106 【圖4-8】本方法之精確度及準確度與不同方法之精確度及準確度比較107 【圖4-9】檢量線線性變化影響準確度及添加回收率圖示108 【圖4-10】各階段背景濃度分析結果與法規背景濃度管制標準109 【圖4-11】二重覆自來水十七種二聯苯戴奧辛及二聯苯呋喃分析的精確度測試結果110 【圖4-12】台灣地區不同研究的自來水採樣體積與其總毒性當量濃度之線性回歸分析111 【圖4-13】40公升及600公升自來水分析的十七種二聯苯戴奧辛及二聯苯呋喃濃度與偵測下限濃度比較112 【圖4-14】本研究與各國公告方法間相同類型水體的偵測下限濃度的比較113 【圖4-15】自來水中十七種二聯苯戴奧辛及二聯苯呋喃的同源物濃度特徵114 【圖4-16】日本自來水中十七種二聯苯戴奧辛及二聯苯呋喃的同源物濃度特徵114 【圖4-17】海水中十七種二聯苯戴奧辛及二聯苯呋喃的同源物濃度特徵115 【圖4-18】不同體積的自來水十七種多氯戴奧辛及呋喃同源物濃度特徵比較116 【圖4-19】600公升的自來水樣本中PCB169的濃度量測117 附錄118 【附錄一】泡棉的合成方式119 【附錄二】淨化標準品對2,3,7,8-TCDD的干擾改善122 【附錄三】不同類型水樣添加內標準品的回收率分佈123 【附錄四】各國水體戴奧辛管制濃度與致癌風險對應圖124

    1.行政院環保署環境檢驗所 戴奧辛及喃檢測方法— 同位素標幟稀釋氣相層析/高解析質譜法 (NIEA M801.10B). 中華民國九十三年六月十一日環署檢字第0930041617號公告 (九十三年九月十五日).
    2.USEPA Ambient water quality criteria for 2,3,7,8-tetrachlorodibenzo-p-dioxin. EPA 440/5-34-007 (1984).
    3.Lung, S.C., Altshul, L.M., Ford, T.E. & Spengler, J.D. Coating effects on the glass adsorption of polychlorinated biphenyl (PCB) congeners. Chemosphere 41, 1865-1871 (2000).
    4.Sobek, A., Gustafsson, O.R. & Axelman, J. An evaluation of the importance of the sampling step to the total analytical variance - A four-system field-based sampling intercomparison study for hydrophobic organic contaminants in the surface waters of the open Baltic Sea Intern. J. Environ. Anal. Chem., 83, 177–187v (2003).
    5.Josep, I., Bellnchon, G., Grimalt, J.O. & AlbalgOs, J. Intercomparison study of liquid-liquid extraction and adsorption on polyurethane and amberlite XAD-2 for the analysis of hydrocarbons,polychlorobiphenyls, and fatty acids dissolved in seawater. Environ Sci Technol 22, 677 (1988).
    6.Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., Van Leeuwen, F.X., Liem, A.K., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F., Zacharewski, T., Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Persp 106, 775–792 (1998).
    7.Rajagopalan, V. Dioxin (PCDDs) and Furan (PCDFs)- Critical persistent organic pollutants (POPs). Central pollution control board ministry of environment & forests (2004).
    8.Smith, R.M., Keefe, P.W., Aldous, K.M., Briggs, R. & Hilker, D.R. Measurement of PCDFs and PCDDs in air samples and lake sediments at several locations in upstate New York. Chemosphere 25, 95-98 (1992).
    9.UNEP Standardized toolkit for identification and quantification of Dioxin and Furan releases. (2005).
    10.USEPA, N.Y. Preparing your drinking water annual water quality report:guidance for water suppliers. State Sanitary Part 5-1, 72(e)-(h) (2005).
    11.行政院環境保護署毒管處 飲用水水質標準修正草案說明. http://www.epa.gov.tw/main/index.asp (2007).
    12.USEPA Method M1613-Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. (1994).
    13.日本環境廳 水道原水及び浄水中のダイオキシン類調査マニュアル. 厚生労働省健康局水道課 (平成19年11月).
    14.Donlon, J., Litten, S. & Wall, G.R. Contaminant assessment and reduction project (carp)-toxic chemicals in new york harbor and vicinity - design of the trace organics platform sampler (TOPs). New York State department of environmental conservation (2003).
    15.Thurman, E.M. Organic geochemistry of natural waters. Thurman (1985).
    16.Donlon, J., Litten, S. & Wall, G.R. Design of the Trace Organics Platform Sampler (TOPS). Society of Environmental Toxicology and Chemistry (SETAC) 20th Annual Meeting Abstract Book, P 218 (1999).
    17.Burgess, R., Mckinney, R., Brown, W. & Quinn, Jamesg. Isolation of marine sediment colloids and associated polychlorinated biphenyls: an evaluation of ultrafiltration and reverse-phase hromatography. Environ Sci Technol 30, 1923-1932 (1996).
    18.Kudlak, S., Shibata, E., Nakamura, T., Lia, X.W. & Yua, Y.M. Review of the sampling and pretreatment methods for Dioxins determination in solids, liquids and gases. J Chin Chem Soc-Taip 54, 245-262 (2007).
    19.Pujadas, E., Diaz Ferrero, J., Marti, R., Broto Puig, F. & Rodriguez Larena, M.C. Application of the new C18 speedisks to the analysis of polychlorinated dibenzo-p-dioxins and dibenzofurans in water and effluent samples. Chemosphere 43, 449-454 (2001).
    20.Choi, J.W., Lee, J.H., Moona, B.S. & Baeka, K.H. Semi-automated disk-type solid-phase extraction method for polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous samples and its application to natural water. J Chromatogr A 1157, 17–22 (2007).
    21.Litten, S., McChesney, D.J., Hamilton, M.C. & Fowler, B. Destruction of the World Trade Center and PCBs, PBDEs, PCDD/Fs, PBDD/Fs, and chlorinated biphenylenes in water, sediment, and sewage sludge. Environ Sci Technol 37, 5502-5510 (2003).
    22.Braun, T., Navratil, J.D. & Farag, A.B. Polyurethane foam sorbents in separation science. CRC PRESS (1985).
    23.Rappe, C., Kjelle, L.O. & Andersson, R. Analyses of PCDDs and PCDFs in sludge and water samples. Chemosphere 19, 13-20 (1989).
    24.Smirnov, A.D., Schecter, A., Papke, O. & Beljak, A.A. Conclusions from Ufa, Russia, drinking water dioxin cleanup experiments involving different treatment technologies. Chemosphere 32, 479-489 (1996).
    25.松村側, 塘敬一 & 松本健一 北太平洋表層水中PCDD/F之分析. 環境化學 5, 416 (1995).
    26.松村側 & 山本貴士 海水中戴奧辛分析方法. 環境化學 2 (1993).
    27.Yasumoto, M., Takako, A. & Masanori, A. Dioxins and Pcbs in japanese tap water. Organohalogen Compounds 46, 463-466 (2000).
    28.Kristoffers & AXELMAN, J. Trace organic sampler intercalibration results role of soot carbon and other carbon matrics in distribution of PAHs among particles,Doc,and the dissolved phase in the efflunt and recipient waters of an aluminum reduction plant. Environ Health Persp 32, 1786-1792 (1998).
    29.Otaka, H., Shimono, H. & Hashimoto, S. Optimization of solid-phase extraction procedure for determination of polychlorinated dibenzo- p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls in humic acid containing water. Anal Bioanal Chem 378, 1854-1860 (2004).
    30.Sanz, C., Padrón, Z., Sosa, F. & Rodríguez, J.J.S. Extraction and preconcentration of polychlorinated dibenzo-p-dioxins using the cloud-point methodology: Application to their determination in water samples by high-performance liquid chromatography. Anal Chim Acta 470, 205-214 (2002).
    31.Taylor, K.Z., Waddell, D.S., Reiner, E.J. & MacPherson, K.A. Direct elution of solid phase extraction disks for the determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in effluent samples. Anal Chem 67, 1186-1190 (1995).
    32.Braithwaite, A. & Smith, F.J. Chromatograhic Methods. Blackie Academic & Professional (1996).
    33.Greg, L. & Ronald, E. A Review of EPA Sample Preparation Techniques for Organic Compound Analysis of Liquid and Solid Samples. Sample Prep Perspectives 10, 1120 (2001).
    34.Ahnoff, M. & Josefesson, B. Simple apparatus for on-site continuous liquid-liquid extraction of organic from natural waters. Anal Chem 64, 658-663 (1974).
    35.蔡清蘭, 吳仲平, 彭瑞華 & 翁英明 水體中懸浮態與溶解態之戴奧辛濃度分布探討. 環境分析研討會,編號18號壁報論文發表 行政院環境保護署環境檢驗所 (2006).
    36.Lin, L.F., Lee, W.J., Su, J.W., Wang, L.C. & ChangChien, G.P. Atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans on the drinking water treatment plant. DSpace at Kun Shan University B5-3, 1 (2006 ).
    37.Kim, H.K., Masaki, H., Matsumura, T., Kamei, T. & Magara, Y. Removal efficiency and homologue patterns of dioxins in drinking water treatment. Water Res 36, 4861-4869 (2002).
    38.Eljarrat, E. & Barcelo, D. Congener-specific determination of dioxins and related compounds by gas chromatography coupled to LRMS,HRMS,MS/MS and TOFMS. J Mass Spectrom 37, 1105-1117 (2002).
    39.Hepburn, C. Polyurethane Elastomers. Elsevier science publish (1992).

    下載圖示 校內:2011-07-29公開
    校外:2013-07-29公開
    QR CODE