簡易檢索 / 詳目顯示

研究生: 黃韋澐
Huang, Wei-Yun
論文名稱: 脛骨骨板之生物力學探討:有限元素分析
Biomechanics of Tibia Bone Plate: Finite Element Analysis
指導教授: 張志涵
Chang, Chih-Han
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 52
中文關鍵詞: 近端脛骨骨板有限元素分析骨癒合時期
外文關鍵詞: Proximal tibia plate, Finite element analysis, Bone-healing period
相關次數: 點閱:107下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近端脛骨骨折的發生率占全身骨折中的1%,雖然發生機率很低,但是此部位的主要功能為支撐身體重量並輔助下肢運動,因此對於近端脛骨骨折之生物力學現象,仍然值得探討。目前治療方式以骨板較適合治療近端脛骨關節性的骨折,在臨床上已經證實出使用鎖定式骨板有良好的治療效果,但是仍然有骨板斷裂的案例發生,而過去文獻中對於近端脛骨骨折類型的生物力學表現提供資訊有限,因此本研究使用有限元素分析方法,評估三種不同廠牌的近端脛骨骨板固定在近端脛骨骨折部位的力學與生物力學表現。
    本篇研究分析骨癒合時期的骨板力學與生物力學現象,因為過去文獻提出骨癒合4-6周時,病患可承受單邊負重(Partial weight-bearing),但是此時期的骨痂較脆弱,需提供良好支撐與保護,因此本研究進而探討部分骨癒合時期時承受單邊負重,評估以骨板固定近端脛骨骨折部位之力學與生物力學現象。
    模擬結果顯示,三種骨板的應力皆集中在骨折部位之兩端,最大應力值在靠近骨折部位的骨板孔洞上,然而增加骨板的工作長度,可有效降低應力集中的現象。結果可發現聯合骨科之近端脛骨骨板與Synthes和Zimmer相較之下,可提供骨折部位較好的穩定度,且在骨板的結構強度與勁度上皆優於Synthes和Zimmer,而生物力學表現上三種骨板皆可促進骨痂形成。由於三種骨板的尺寸不盡相同,本研究之模擬參數有以骨板的厚度進行探討,發現不同廠牌的骨板在相同厚度下,模擬結果是類似的,因此可推測骨板厚度對於結構強度與勁度上的確有顯著的影響。

    Tibia fractures account for 1% of all fractures in human beings. The main features of the tibia joint surface is to support our body weight, hence, it is extremely important to us and so there is a vital necessity to understand the biomechanical performance of proximal tibia fractures. In clinical treatment, using a locking plate to stabilize and treat the proximal tibia fractures has shown good results. However, there are still examples of failed cases, such as those in which bone plate breakage occur.
    The aim of this study is to determine the best of three different brands of proximal tibia plates which are commonly used to fix the fracture site, under the simulation of the worst conditions, when using the finite element method, as well as assessing the biomechanics effects of the bone plate when used on a proximal tibia fracture.
    The results show that the maximum stress value of the bone plates of different brands is located at the position of the screw holes; the stress concentration sites are located on both sides of the fracture fragments. However, increasing the working length of the bone plate can effectively reduce the phenomenon of stress concentration.
    Compared with the bone plates of the other two brands, the bone plate made by the United Orthopedic Corporation not only has better mechanical properties, but is also able to obtain the same effect as the other brands regarding the promotion of callus formation in the bone healing process.

    中文摘要 I Abstract II 致謝 III Contents IV List of tables VI List of figures VIII Chapter 1 Introduction 1 1.1 The anatomy of the tibia and characteristics of bone 2 1.1.1 The anatomy of the tibia 2 1.1.2 The characteristics of bone 4 1.2 Tibia fracture 5 1.2.1 The epidemiology of proximal tibia fracture 5 1.2.2 The types of tibia fracture 7 1.2.3 Repair of bone fractures 8 1.2.4 Treatment of proximal tibia fractures 9 1.3 The bone plate 10 1.3.1 Development of Bone plate 10 1.3.2 Types of the bone plate 14 1.4 Literature Review 16 1.5 Motivation and Purpose 19 Chapter2 Materials and Methods 20 2.1 The research process 20 2.2 Bone plate fixed to proximal tibia fractures: Finite element analysis 21 2.2.1 Construction of a three-dimensional finite element model of tibia bone and bone plate 21 2.2.2 Construction the 3D Bone Plate Model 24 2.2.3 Construction the 3D Post-Operative Model 26 2.2.4 Finite element analysis – Material Properties 27 2.2.5 Finite element analysis – Boundary Conditions and Loading Conditions and Contact 28 2.3 The simulation parameters 29 Chapter3 Results and Discussion 34 3.1 Comparisons among different bone plate types 34 3.2 Biomechanical analysis results of bone plate fixed to the proximal tibia fracture 36 3.2.1 Effect of extra screw near the fracture site 37 3.2.2 Gap distance between the bone and bone plate 40 3.2.3 Bone plate thickness 43 3.2.4 Displacement between the callus 47 3.3 Limtations 48 Chapter4 Conclusions 49 Reference 50

    1. Marieb, E.N. and J. Mallatt, Human Anatomy. 2001: Benjamin-Cummings Publishing Company.
    2. Ricci, W.M., J.R. Rudzki, and J. Borrelli, Jr., Treatment of complex proximal tibia fractures with the less invasive skeletal stabilization system. J Orthop Trauma, 2004. 18(8): p. 521-7.
    3. Fenton, P. and K. Porter, Tibial plateau fractures: A review. Trauma, 2011. 13(3): p. 181-187.
    4. Rockwood, C.A., et al., Rockwood and Green's Fractures in Adults. 2010: Wolters Kluwer/Lippincott Williams & Wilkins.
    5. Marsh, J.L., et al., Fracture and dislocation classification compendium - 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma, 2007. 21(10 Suppl): p. S1-133.
    6. Kalfas, I.H., Principles of bone healing. Neurosurg Focus, 2001. 10(4): p. E1.
    7. Krieg, J.C., Proximal tibial fractures: current treatment, results, and problems. Injury, 2003. 34 Suppl 1: p. A2-10.
    8. Perry, C.R., et al., Fractures of the proximal tibia. Instr Course Lect, 1999. 48: p. 497-513.
    9. Fouad, H., Effects of the bone-plate material and the presence of a gap between the fractured bone and plate on the predicted stresses at the fractured bone. Med Eng Phys, 2010. 32(7): p. 783-9.
    10. Uhthoff, H.K., P. Poitras, and D.S. Backman, Internal plate fixation of fractures: short history and recent developments. J Orthop Sci, 2006. 11(2): p. 118-26.
    11. Schutz, M. and N.P. Sudkamp, Revolution in plate osteosynthesis: new internal fixator systems. J Orthop Sci, 2003. 8(2): p. 252-8.
    12. Gautier, E. and S.M. Perren, [Limited Contact Dynamic Compression Plate (LC-DCP)--biomechanical research as basis to new plate design]. Orthopade, 1992. 21(1): p. 11-23.
    13. Kubiak, E.N., et al., The evolution of locked plates. J Bone Joint Surg Am, 2006. 88 Suppl 4: p. 189-200.
    14. Nikolaou, V.S., et al., Proximal tibial fractures: early experience using polyaxial locking-plate technology. International Orthopaedics, 2011. 35(8): p. 1215-1221.
    15. Bottlang, M., et al., Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg Am, 2010. 92 Suppl 2: p. 12-22.
    16. R. Frigg, A.F., N.P. Haas & P. Regazzoni, <lcp_long.pdf>. AO Dialogue, 2001. 14: p. 8-9.
    17. Sirbu, P.D., et al., Minimally Invasive Plate Osteosynthesis (MIPO) in Long Bone Fractures – Biomechanics – Design – Clinical Results. Biomechanics in Applications. 2011.
    18. Sommer, C., et al., First clinical results of the Locking Compression Plate (LCP). Injury, 2003. 34 Suppl 2: p. B43-54.
    19. Cullen, A.B., S. Curtiss, and M.A. Lee, Biomechanical comparison of polyaxial and uniaxial locking plate fixation in a proximal tibial gap model. J Orthop Trauma, 2009. 23(7): p. 507-13.
    20. Ma, C.-H., et al., Metaphyseal locking plate as a definitive external fixator for treating open tibial fractures—Clinical outcome and a finite element study. Injury, 2013. 44(8): p. 1097-1101.
    21. Ganesh, V.K., K. Ramakrishna, and D.N. Ghista, Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Biomed Eng Online, 2005. 4: p. 46.
    22. Eberle, S., et al., Type of hip fracture determines load share in intramedullary osteosynthesis. Clin Orthop Relat Res, 2009. 467(8): p. 1972-80.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE