簡易檢索 / 詳目顯示

研究生: 楊淵升
Yang, Yuan-Sheng
論文名稱: 磁性拓樸絕緣體Mn(Sb1-xBix)2Te4之能帶結構與磁電性分析
Band Structure and Magnetoelectric Analysis of Magnetic Topological Insulator Mn(Sb1-xBix)2Te4
指導教授: 黃榮俊
Huang,Jung-Chun-Andrew
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 拓樸絕緣體MnSb2Te4Mn(Sb1-xBix)2Te4角解析光電子能譜超順磁
外文關鍵詞: Topological insulator, MnSb2Te4, Mn(Sb1-xBix)2Te4, ARPES, Superparamagnetic
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期反鐵磁拓撲絕緣體MnBi2Te4有很多重要的研究與發展,與之結構相似但磁電性質相異的MnSb2Te4也開始被關注。因此藉由改變Mn(Sb1-xBix)2Te4中Bi與Sb的比例與Mn的量,我們期望能看見能帶結構與磁電性的轉變。在能帶的實驗結果中,我們發現在Mn0.5(Sb1-xBix)2Te4的系統中存在一個n-type到p-type的轉換點,並在x=0.65的樣品中證實其六重對稱的結構。我們也觀察到改變Mn的比例會對其拓樸表面態產生顯著的變化。在磁電性的量測方面我們發現與文獻不一樣的結果,其中MnSb2Te4與Mn0.5(Sb0.35Bi0.65)2Te4為超順磁性而Mn0.5Sb2Te4為反鐵磁性,同時我們也觀察到該系列樣品具有半導體的傳輸特性。

    Recently, the antiferromagnetic topological insulators of MnBi2Te4 have been developed. On the other hand, the MnSb2Te4 materials crystal structure similar to MnBi2Te4 also have been focused, which have different magnetic and electronic transport properties. The band structure of Mn0.5(Sb1-xBix)2Te4 (MSBT) system was measured by angle-resolved photoemission spectroscopy (ARPES). The n to p type transition point in MSBT thin films and sixfold symmetric structure in x=0.65 are confirmed. The topological surface state of MnSb2Te4 is significantly affected by the Mn ratio. Moreover, the result of magnetic and electronic transport properties is different from previous studies. We observed that MnSb2Te4 and Mn0.5(Sb0.35Bi0.65)2Te4 are superparamagnetic, while Mn0.5Sb2Te4 is antiferromagnetic by the superconducting quantum interference device (SQUID). We also observed MnSb2Te4 and Mn0.5(Sb0.35Bi0.65)2Te4 have the transport property of semiconductor by physical property measurement system (PPMS).

    摘要 I Abstract II 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章、緒論 1 1-1 拓樸絕緣體 1 1-2 磁性拓樸絕緣體 4 1-3 文獻回顧 8 第二章、實驗相關原理 11 2-1 同步輻射原理 11 2-2 光電子發射能譜 14 2-3 物質的磁性 17 2-4 霍爾效應 20 2-5 磁阻效應 22 第三章、實驗儀器與流程 24 3-1 角解析光電子能譜儀 - 儀器介紹 24 3-2 角解析光電子能譜儀 - 實驗流程 26 3-3 超導量子干涉磁化儀 - 儀器介紹 29 3-4 超導量子干涉磁化儀 - 實驗流程 30 3-5 微影蝕刻 - 儀器介紹 33 3-6 微影蝕刻 - 實驗流程 36 3-7 物理性質量測系統 - 儀器介紹 39 3-8 物理性質量測系統 - 實驗流程 40 第四章、實驗結果與討論 43 4-1 實驗架構 43 4-2 角解析光電子能譜 44 4-2-1 角解析光電子能譜實驗簡介 44 4-2-2 不同厚度與不同Mn比例Mn1-ySb2Te4之能帶分析 46 4-2-3 不同厚度與不同Mn比例Mn1-ySb2Te4之元素分析 50 4-2-4 不同參雜比例Mn0.5(Sb1-xBix)2Te4之能帶分析 54 4-2-5 不同參雜比例Mn0.5(Sb1-xBix)2Te4之元素分析 58 4-2-6 不同光子能量Mn0.5(Sb1-xBix)2Te4之能帶分析 61 4-2-7 Mn0.5(Sb0.35Bi0.65)2Te4 三維能帶結構分析 66 4-2-8 不同厚度MnBi2Te4之能帶分析 70 4-3 超導量子干涉磁化儀 72 4-3-1 不同Mn比例Mn1-ySb2Te4之磁性分析 72 4-3-2 不同厚度Mn0.5Sb2Te4之磁性分析 75 4-3-3 不同參雜比例Mn0.5(Sb1-xBix)2Te4之磁性分析 83 4-4 物理性質量測系統 87 4-4-1 MnSb2Te4之電性分析 87 4-4-2 不同參雜比例Mn0.5(Sb1-xBix)2Te4之電性分析 89 第五章、結論 94 第六章、參考文獻 95

    [1] C.L. Kane, Topological Band Theory and the ℤ2 Invariant. Elsevier, 3-34, 2013

    [2] C.L. Kane, E.J. Mele, Z 2 topological order and the quantum spin Hall effect. Physical review letters, 95, 14, 146802, 2005

    [3] L. Fu, C.L. Kane, Topological insulators with inversion symmetry. Physical Review B, 76, 4, 045302, 2007

    [4] H. Zhang, C.-X. Liu, X.-L. Qi, et al., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature physics, 5, 6, 438-442, 2009

    [5] Y. Chen, J.G. Analytis, J.-H. Chu, et al., Experimental realization of a three-dimensional topological insulator, Bi2Te3. science, 325, 5937, 178-181, 2009

    [6] S. Zhu, Y. Ishida, K. Kuroda, et al., Ultrafast electron dynamics at the Dirac node of the topological insulator Sb2Te3. Scientific reports, 5, 1, 1-6, 2015

    [7] R.S. Mong, A.M. Essin, J.E. Moore, Antiferromagnetic topological insulators. Physical Review B, 81, 24, 245209, 2010

    [8] Y. Tokura, K. Yasuda, A. Tsukazaki, Magnetic topological insulators. Nature Reviews Physics, 1, 2, 126-143, 2019

    [9] D. Zhang, M. Shi, T. Zhu, et al., Topological axion states in the magnetic insulator MnBi 2 Te 4 with the quantized magnetoelectric effect. Physical review letters, 122, 20, 206401, 2019

    [10] C.-Z. Chang, J. Zhang, X. Feng, et al., Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 340, 6129, 167-170, 2013

    [11] M.M. Otrokov, I.I. Klimovskikh, H. Bentmann, et al., Prediction and observation of an antiferromagnetic topological insulator. Nature, 576, 7787, 416-422, 2019

    [12] Y.-J. Hao, P. Liu, Y. Feng, et al., Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Physical Review X, 9, 4, 041038, 2019

    [13] B. Chen, F. Fei, D. Zhang, et al., Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nature communications, 10, 1, 1-8, 2019

    [14] National Synchrotron Radiation Research Center (NSRRC), Synchrotron Light Source, 2018

    [15] M. Howells, B.M. Kincaid, The properties of undulator radiation. Springer, 315-358, 1994

    [16] Y. Song, P.-C. Tseng, L.-R. Huang, et al., Design of an ultra-high resolution and high flux cylindrical grating monochromator undulator beamline. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467, 496-499, 2001

    [17] N.V. Smith, Photoemission properties of metals. Critical Reviews in Solid State and Material Sciences, 2, 1, 45-83, 1971

    [18] E. Fermi, Nuclear physics: a course given by Enrico Fermi at the University of Chicago. Journal, 1950

    [19] C. Kittel, Introduction to solid state physics Eighth edition. 2021

    [20] S. Mugiraneza, A.M. Hallas, Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Communications Physics, 5, 1, 1-12, 2022

    [21] C. Bean, u.D. Livingston, Superparamagnetism. Journal of Applied Physics, 30, 4, S120-S129, 1959

    [22] E.H. Hall, On a new action of the magnet on electric currents. American Journal of Mathematics, 2, 3, 287-292, 1879

    [23] E.H. Hall, On the new action of magnetism on a permanent electric current. American Journal of Science, 3, 117, 161-186, 1880

    [24] M.I. D'Yakonov, V. Perel, Possibility of orienting electron spins with current. ZhETF Pisma Redaktsiiu, 13, 657, 1971

    [25] Y.K. Kato, R.C. Myers, A.C. Gossard, et al., Observation of the spin Hall effect in semiconductors. science, 306, 5703, 1910-1913, 2004

    [26] K.v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical review letters, 45, 6, 494, 1980

    [27] D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Physical Review Letters, 48, 22, 1559, 1982

    [28] C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Physical review letters, 95, 22, 226801, 2005

    [29] M. Konig, S. Wiedmann, C. Brune, et al., Quantum spin Hall insulator state in HgTe quantum wells. Science, 318, 5851, 766-770, 2007

    [30] W. Thomson, XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London, 8, 546-550, 1857

    [31] H. Brooks, Ferromagnetic anisotropy and the itinerant electron model. Physical Review, 58, 10, 909, 1940

    [32] T. McGuire, R. Potter, Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Transactions on Magnetics, 11, 4, 1018-1038, 1975

    [33] M. Julliere, Tunneling between ferromagnetic films. Physics letters A, 54, 3, 225-226, 1975

    [34] T. Miyazaki, N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. Journal of magnetism and magnetic materials, 139, 3, L231-L234, 1995

    [35] J.S. Moodera, L.R. Kinder, T.M. Wong, et al., Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Physical review letters, 74, 16, 3273, 1995

    [36] G. Binasch, P. Grünberg, F. Saurenbach, et al., Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B, 39, 7, 4828, 1989

    [37] M.N. Baibich, J.M. Broto, A. Fert, et al., Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61, 21, 2472, 1988

    [38] C. Chappert, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage. World Scientific, 147-157, 2010

    [39] C.-W. Luo, H. Wang, S. Ku, et al., Snapshots of Dirac fermions near the Dirac point in topological insulators. Nano letters, 13, 12, 5797-5802, 2013

    [40] J. Janesch, Two-wire vs. four-wire resistance measurements: Which configuration makes sense for your application. no May, 2-4, 2013

    [41] M.-C. Tsai. Study on the structure and magnetoelectric properties of epitaxial growth antiferromagnetic topological insulator MnBi2Te4. Master's thesis, National Chong Kung University, 7 2021

    [42] F.-C. Tai. Epitaxial growth and analysis of magnetic topological insulator MnSb2Te4 and Mn(BixSb1-x)2Te4 thin films. Master's thesis, National Chong Kung University, 7 2022

    [43] S. Moser, An experimentalist's guide to the matrix element in angle resolved photoemission. Journal of Electron Spectroscopy and Related Phenomena, 214, 29-52, 2017

    [44] T. Murakami, Y. Nambu, T. Koretsune, et al., Realization of interlayer ferromagnetic interaction in MnS b 2 T e 4 toward the magnetic Weyl semimetal state. Physical Review B, 100, 19, 195103, 2019

    [45] Y.Y. Li, G. Wang, X.G. Zhu, et al., Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Advanced materials, 22, 36, 4002-4007, 2010

    [46] Y. Chen, Y.-W. Chuang, S.H. Lee, et al., Ferromagnetism in van der Waals compound MnS b 1.8 B i 0.2 T e 4. Physical Review Materials, 4, 6, 064411, 2020

    [47] D. Yan, M. Yang, P. Song, et al., Site mixing induced ferrimagnetism and anomalous transport properties of the Weyl semimetal candidate Mn Sb 2 Te 4. Physical Review B, 103, 22, 224412, 2021

    [48] H. Li, S. Liu, C. Liu, et al., Antiferromagnetic topological insulator MnBi 2 Te 4: Synthesis and magnetic properties. Physical Chemistry Chemical Physics, 22, 2, 556-563, 2020

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE