| 研究生: |
賴諭萱 Lai, Yu-Hsuan |
|---|---|
| 論文名稱: |
利用MC-ICPMS 及TIMS 精確測量海水中鈣元
素之同位素比值 Precise Determination for Calcium Isotope Composition of Seawater Using MC-ICPMS and TIMS |
| 指導教授: |
楊懷仁
Yang, Huai-Jen 沈君山 Shen, Jiun-San |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 鈣同位素 、雙示蹤劑 、海水 、質譜儀 |
| 外文關鍵詞: | seawater, double spike, Calcium isotope, mass spectrometry |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
為了探討海洋中生物殼體之鈣同位素組成是否可以作為海洋中碳酸根離子濃度的代用指標,我們首先必需發展一套高精確性的鈣同位量測技術。因此我們
利用多接收器感應偶合電漿質譜儀搭配sample-standard bracketing 方式測量樣本的鈣同位素組成。但由於目前儀器所得到的精準度為0.2 ‰ (2σ),並無法滿足我們的需求,因此我們轉而希望利用熱游離質譜儀搭配42Ca-48Ca 雙示蹤劑發展出一套新的空間幾何向量解法,以求得樣本鈣同位素組成。目前利用此套方法測量NIST SRM 915a CaCO3,所得結果精準度可以達到21 ppm (1σ),已合乎我們實驗的要求。
目前世界各地海水的鈣同位素組成被研究的非常透徹。但是西太平洋海水的鈣同位素組成至今仍然是沒有數據公佈於世。我們希望利用趨於成熟的鈣同位素
量測技術,來詳細地了解現今西太平洋海水內鈣同位素分佈與均勻情形。本實驗中我們選取了位於南沖繩海槽(#1-10, 24°57'N-122°16'E, 水深10 m)與台灣東南方(FRI-SKII-S3, 22°10'N-121°10'E, 水深0 m)兩個位置的海洋表水樣本進行鈣同位素組成分析。兩個樣本的鈣同位素組成(δ40/44CaSRM915a)分別為-1.91 ± 0.16 (2σ)以及-1.89 ± 0.05 (2σ),其所測量到的鈣同位素比值與其他研究學者結果相同,顯示現今全世界各大洋海水的鈣同位素的比值在分析誤差內是均勻相同。
Abstract
Calcium isotope ratio (δ40/44Ca) of marine foraminifera can be a new proxy for reconstructing the concentration of carbonate ion ([CO32-]) in paleo-oceans, provided that δ40/44Ca must be determined precisely to reach one sigma uncertainty (1σ) of < 30 ppm. In this study, we measured the δ40/44Ca of reference standard, NIST SRM 915, using multi-collector inductively-coupled-plasma mass-spectrometry (MC-ICP-MS) and thermal ionization mass-spectrometry (TIMS). The external precision of δ40/44Ca values determined by MC-ICP-MS was 0.2 ‰ (2σ), which is beyond that required for recognizing δ40/44Ca variations in marine foraminifera caused by the change of [CO32-] in paleo-oceans. In contrast, the data obtained from TIMS using 42Ca-48Ca double spike technique and a newly eveloped spatial vector calculation minimized the optimum external reproducibility to 21 ppm (1σ), which is well within the required precision. With this success, we used the TIMS techniques to measure the δ40/44Ca values of seawaters from south Okinawa trough (#1-10, 24°57'N-122°16'E, 10
m water depth) and southeast coast of Taiwan (FRI-SKII-S3, 22°10'N-121°10'E, 0 m water depth). These data are the first Ca isotope measurements for western Pacific seawaters. The δ40/44CaSRM915a values of these two seawater samples are -1.91 ± 0.16 (2σ) and -1.89 ± 0.05 (2σ). These results agree with the published global ocean data indicating the variation of seawater δ40/44Ca values is within 100 ppm (1σ).
Broecker W. S. and Clark E. (2001) Glacial-to-Holocene redistribution of carbonate ion in the deep sea. Science, 294, 2152-2155.
Chang V. T.-C. (2002) Mg and Ca isotope fractionation during CaCO3
biomineralisation, PhD thesis, Oxford University.
Chang V. T.-C., Williams R. J. P., Makishima A., Belshawl N. S. and ƠNions R. K.(2004) Mg and Ca isotope fractionation during CaCO3 biomineralisation.
Biochemical and Biophysical Research Communications, 323, 79-85.
De Groot P. A. (2004) Handbook of stable isotope analytical techniques, Volume I.Elsevier.
De La Rocha C. L. and DePaolo D. J. (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science, 289, 1176-1178.
Dodson M. H. (1963) A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique: Part I. General first-order algebraic solutions. Journal of Scientific Instruments, 40, 289-295.
Dodson M. H. (1970) Simplified equations for double-spiked isotopic analyses.
Geochimica et Cosmochimica Acta, 34, 1241-1244.
Fietzke J., Eisenhauer A., Gussone N., Bock B., Liebetrau V., Nägler T. F., Spero H. J., Bijma J. and Dullo C. (2004) Direct measurement of 44Ca/40Ca ratios by MC-ICP-MS using the cool plasma technique. Chemical Geology, 206, 11-20.
Galer S. J. G. (1999) Optimal double and triple spiking for high precision lead isotopic measurement. Chemical Geology, 157, 255-274.
Gussone N., Eisenhauer A., Heuser A., Dietzel M., Bock B., Böhm F., Spero H. J., Lea D. W., Bijma J. and Nägler T. F. (2003) Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 67, 1375-1382.
Gussone N., Böhm F., Eisenhauer A., Dietzel M., Heuser A., Teichert B. M. A.,
Reitner J., Wörheide G. and Dullo W. (2005) Calcium isotope fractionation in
calcite and aragonite. Geochimica et Cosmochimica Acta, 69, 4485-4494.
Halicz L., Galy A., Belshaw N. S. and ƠNions R. K. (1999) High-precision
measurement of calcium isotopes in carbonates and related materials by multiple
collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Journal of
Analytical Atomic Spectrometry, 14, 1835-1838.
Heuser A., Eisenhauer A., Gussone N., Bock B., Hansen B. T. and Nägler T. F. (2002) Measurement of calcium isotope (δ44Ca) using a multicollector TIMS technique. International Journal of Mass Spectrometry, 220, 385-397.
Hippler D., Eisenhauer A. and Nägler T. F. (2006) Tropical Atlantic SST history
inferred from Ca isotope thermometry over the last 140ka. Geochimica et
Cosmochimica Acta, 70, 90-100.
Johnson C. M., Beard B. L. and Albarède F. (2004) Reviews in mineralogy and
geochemistry, Volume 55: Geochemistry of non-traditional stable isotopes.
Mineralogical Society of America.
Kreissig K. and Elliott T. (2004) Ca isotope fingerprints of early crust-mantle
evolution. Geochimica et Cosmochimica Acta, 69, 165-176.
Lea D. W. (1995) A trace metal perspective on the evolution of Antarctic circumpolar deep Water chemistry. Paleoceanography, 10, 733-748.
Lee D. C. (2005) Protracted core formation in asteroids: Evidence from high precision W isotope data. Earth and Planetary Science Letters, 237, 21-32.
Lemarchand D., Wasserburg G. J. and Papanastassiou (2004) Rate-controlled calciumisotope fractionation in synthetic calcite. Geochimica et Cosmochimica Acta, 68, 4665-4678.
Marriott C. S., Henderson G. M., Belshaw N. S. and Tudhope A. W. (2004)
Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium
carbonate. Earth and Planetary Science Letters, 222, 615-624.
Moore L. J. and Machlan L. A. (1972) High accuracy determination of calcium in
blood serum by isotope dilution mass spectrometry. Analytical Chemistry, 44,
2291-2296.
Nägler T. F., Eisenhauer A., Muller A., Hemleben C. and Kramers J. (2000) The
δ44Ca-temperature calibration on fossil and cultured G. sacculifer: New tool for reconstruction of past sea surface temperature. Geochemistry, Geophysics,
Geosystems, 01, Paper number 2000GC000091.
Nuclides and Isotopes (1996) Fifteenth Edition, GE Nuclear Energy.
Pagani M., Lemarchand D., Spivack A. and Gaillardet J. (2005) A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates. Geochimica et Cosmochimica Acta, 69, 953-961.
Russell W. A., Papanastassiou D. A. and Tombrello T. A. (1978) Ca isotope
fractionation on the Earth and other solar system materials. Geochimica et
Cosmochimica Acta, 42, 1075-1090.
Sanyal A., Hemming N. G., Hanson G. N. and Broecker W. S. (1995) Evidence for a
higher pH in the glacial ocean from boron isotopes in foraminifera. Nature, 373, 234-236.
Sanyal A., Nugent M., Reeder R. J. and Bijma J. (2000) Seawater pH control on the boron isotopic composition of calcite: Evidence from inorganic calcite precipitation experiments. Geochimica et Cosmochimica Acta, 64, 1551-1555.
Schmitt A. D., Bracke G., Stille P. and Kiefel B. (2001) The calcium isotope
composition of modern seawater determined by thermal ionization mass
spectrometry. Geostandards Newsletter : The Journal of Geostandards and
Geoanalysis, 25, 267-275.
Schmitt A. D., Chabaux F. and Stille P. (2003a) The calcium riverine and
hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth and
Planetary Science Letters, 213, 503-518.
Schmitt A. D., Stille P. and Vennemann T. (2003b) Variations of the 44Ca/40Ca ratio in seawater during the past 24 million years: Evidence from δ44Ca and δ18O values of Miocene phosphates. Geochimica et Cosmochimica Acta, 67, 2607-2614.
Schmitt A. D., Stille P. (2005) The source of calcium in wet atmospheric deposit: Ca-Sr isotope evidence. Geochimica et Cosmochimica Acta, 69, 3463-3468.
Siegenthaler U., Stocker T. F., Monnin E., Lüthi D., Schwander J., Stauffer B.,
Raynaud D., Barnola J.-M., Fischer H., Valérie M.-D., Jouzel J. (2005) Stable
carbon cycle-climate relationship during the late Pleistocene. Science, 310,
1313-1317.
Sime N. G., De La Rocha C. L. and Galy A. (2005) Negligible temperature
dependence of calcium isotope fractionation in 12 species of planktonic
foraminifera. Earth and Planetary Science Letters, 232, 51-66.
Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium
isotopic abundances in the global calcium cycle. Geochimica et Cosmochimica
Acta, 61, 2505-2510.
Spahni R., Chappellaz J., Stocker T. F., Loulergue L., Hausammann G., Kawamura K., Flückiger J., Schwander J., Raynaud D., Valérie M.-D., Jouzel J. (2005)
Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science, 310, 1317-1321.
Teichert B. M. A., Gussone N., Eisenhauer A. and Bohrmann G. (2005) Clathrites:
Archives of near-seafloor pore-fluid evolution (δ44/40Ca, δ13C, δ13O) in gas hydrate environments. Geology, 33, 213-216.
Wieser M. E., Buhl D., Bouman C. and Schwieters J. (2004) High precision calcium isotope ratio measurements using a magnetic sector multiple collector inductively coupled plasma mass spectrometer. Journal of Analytical Atomic Spectrometry, 19, 844-851.
Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochimica et Cosmochimica Acta, 62, 1691-1698.