| 研究生: |
劉俊宏 Liu, Chun-Hung |
|---|---|
| 論文名稱: |
過氧化氫預分解混合火箭於多次點火應用之點火延遲特性探討 Study of Ignition Delay Characteristic of Pre-decomposition Hydrogen Peroxide Hybrid Rocket in Multiple Ignition Application |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 混合火箭 、前置觸媒床 、高濃度過氧化氫 、多次點火 、點火延遲 |
| 外文關鍵詞: | Hybrid rocket, Hydrogen Peroxide, Multiple ignition, Ignition delay |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
混合火箭有可控推力與重複點火的優勢,且研發時間短與成本較低,使許多研究機構與民間業者皆投入於混合火箭的研究開發,在上層火箭或是軌道轉換等應用方面需要長時間燃燒與多次重複點火的能力,而混合火箭的前置觸媒床點火系統已有相當多的研究成果,透過此方式可以輕易做到重複點火,然而混合火箭經過燃燒後必定面臨藥柱內徑增大的情況,內徑的大幅增加可能導致再點火時的流場型態與熱傳的改變,進而影響觸媒點火系統重複點火的點火延遲時間。
本研究使用過氧化氫預分解系統搭配40P藥柱,實際點火燃燒觀察點火延遲隨內徑的變化,透過分析點火前之流場與熱傳型態,並根據表面溫度點火條件以理論熱傳模型計算點火延遲時間,實驗結果與理論計算相當接近,表示以表面溫度作為點火條件在本研究之操作區間內仍相當適用,且操作的內徑範圍在此系統之推力等級中已相當大,這些理論分析方式可以做為未來多次點火的任務規劃
Hybrid rockets have the advantages of controllable thrust and multiple ignition, as well as short development time and low cost. In applications such as upper-stage rockets or orbital transitions, long-time combustion and multiple repeated ignition capabilities are required. The catalyst bed ignition system can easily achieve repeated ignition, but the hybrid rocket must face an increase in the internal diameter of the fuel grain after combustion. The large increase in the internal diameter may lead to changes in the flow field and heat transfer pattern during re-ignition. This in turn affects the ignition delay time of the system for repeated ignition. Through the analysis of the flow field and heat transfer pattern before ignition, the theoretical heat transfer model is used to calculate the ignition delay time according to the ignition criterion of the surface temperature. The experimental results are in good agreement with the theoretical calculations, indicating that the surface temperature of the fuel grain could be the ignition criterion in the operating range of this study. This analysis can be used as the mission planning for multiple ignitions in the future.
[1]關智光(2006), "先導型100 mN過氧化氫微推進器之自主研發," 成功大學航空太空工程學系學位論文。
[2] J. Becklake (1990), “The British Black Knight Rocket,” Journal of the British Interplanetary Society, Vol. 43, pp. 283-290.
[3] M. G. Faenza, and A. J. Boiron (2017), “Getting Ready for Space: Nammo’s Development of a 30 kN Hybrid Rocket Based Technology Demonstrator,” 7th European Conference for Aeronautics and Space Sciences, Milan, Italy, July 3-6.
[4] O. Verberne, J. E. Ronningen and A. J. Boiron (2014), “Development and Testing of Hydrogen Peroxide Hybrid Rocket Motors at Nammo Raufoss,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, July 28-30.
[5] J. C. Martin, and K. K. Kuo (2007), “Fundamentals of hybrid rocket combustion and propulsion,” Progress in Astronautics and Aeronautics, Vol. 218, AIAA Series, AIAA VA USA.
[6] E. Paccagnella, and M. Santi (2019), “Testing of a Long-Burning-Time Paraffin-Based Hybrid Rocket Motor,” Journal of Propulsion and Power, Vol. 35, No. 2, pp.432-442.
[7] M. A. Saraniero (1970), “Combustion anomalies in stop-restart firing of hybrid rocket engines,”, Calhoun institutional archive of the naval postgraduate school.
[8] G. A. Marxman, and C. E. Wooldridge (1964), “Fundamentals of Hybrid Boundary-Layer Combustion” Progress in Astronautics and Rocketry, Vol. 15, pp. 485-522.
[9] H. Tian, C. Li, and G. Cai (2015), “Ignition theory investigation and experimental research on hybrid rocket motor,” Aerospace Science and Technology, Vol. 42, pp. 334-341.
[10] G. Cai, C. Li, S. Zhao, and H. Tian (2017), “Transient analysis on ignition process of catalytic hybrid rocket motor, ” Aerospace Science and Technology, Vol. 67, pp. 366-377.
[11] J. T. Yang, and Y. Y. Wu (1994), “Solid-Fuel Regression During Ignition Transient in a Ram Jet,” Proceedings of the Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Vol. 25, No.1, pp. 1603-1608.
[12] P. George, and S. Krishnan (2001), “Fuel Regression Rate in Hydroxyl-Terminated-Polybutadiene/ Gaseous-Oxygen Hybrid Rocket Motors,” Journal of Propulsion and Power, Vol. 17, No. 1.
[13] D. Bianchi, F. Nasuti, and C. Carmicino (2016), “Hybrid Rockets with Axial Injector: Port Diameter Effect on Fuel Regression Rate,” Journal of Propulsion and Power, Vol. 32, No. 4, pp. 984-996.
[14] N. Yadav, S. Karmakar (2014), “Regression Rate Studies of Paraffin Wax-HTPB Hybrid Fuels Using Swirl Injectors,” Propellants Explosives. Pyrotechnics, Vol. 39, No. 6, pp. 859–865.
[15] Y. K. Sinha, B. T. N. Sridhar, and R. Kishnakumar (2016). “Study of Thermo-Mechanical Properties of HTPB–Paraffin Solid Fuel” Arabian Journal Science and Engineering, Vol. 41, pp. 4683–4690.
[16] R. S. Brown, T. K. Wirrick, and R. Anderson (1964), “Theory of Ignition and Ignition Propagation of Solid Propellants in a Flow Environment,” Solid propellant rocket conference, California, U.S.A, January 29-31, pp.196.
[17] H. Tian, and R. Yu (2017), “Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor,” Acta Astronautica, Vol. 140, pp.247-254.
[18] P. P. Zemanick, and R. S. Dougall (1970), “Local Heat Transfer Downstream of Abrupt Circular Channel Expansion,” ASME Journal of Heat Transfer, Vol. 92, pp. 53.
[19] S. Ashfaq, and S. A. Khan (2015), “Combined Effect of Relief and Level of Expansion in a Suddenly Expanded Flow,” IOSR Journal of Mechanical and Civil Engineering, Vol. 12, No. 5, pp. 52-59.
[20] G. S. Haag, M. N. Sweeting, and G. Richardson (1999), “Low Cost Propulsion Development for Small Satellites at The Surrey Space Centre,” 13th AIAA/USU Conference on Small Satellites, Aug. 23–26.
校內:2025-07-16公開