簡易檢索 / 詳目顯示

研究生: 郭耀鴻
Guo, Yao-Hong
論文名稱: 探討前胸腺素α於小鼠複雜性局部疼痛症候群模型上的角色
The Regulatory Role of Prothymosin α in Mouse Complex Regional Pain Syndrome Model
指導教授: 吳昭良
Wu, Chao-Liang
林裕晴
Lin, Yu-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所碩士在職專班
Institute of Clinical Medicine(on the job class)
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 31
中文關鍵詞: 複雜性局部疼痛症候群慢性缺血疼痛模型前胸腺素α免疫染色痛覺異常
外文關鍵詞: Complex regional pain syndrome (CRPS), chronic post-ischemic pain (CPIP), prothymosin α, immunohistochemistry (IHC), allodynia
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的: 複雜性局部疼痛症候群是一種發生機轉和病程不明的疼痛難題。可能的病生理至少包含發炎、周邊或中樞性神經敏感化、組織缺血後再灌流損傷,及交感神經失調等。小鼠慢性缺血疼痛模型會表現急性期組織再灌流充血,以及慢性期持續的機械性痛覺異常。這二時段的疼痛行為,恰可分別模擬人類複雜性局部疼痛症候群第一型之急性及慢性的臨床表現。該模型亦可見老鼠疼痛行為會伴隨肌肉及脊髓組織內介白素-1β及核因子-κB表現升高。前胸腺素α與核因子-κB、免疫及發炎調節有關,而且能在缺氧的狀況下提供神經保護效果。本實驗希望探討前胸腺素α於複雜性局部疼痛症候群的可能作用。

    研究設計: 小鼠慢性缺血疼痛模型利用三小時的組織缺血及接踵而來的再灌流損傷,引發機械性痛覺異常。透過腳底觸覺敏感度測量(von Frey纖維絲測試)來評估小鼠於組織缺血前,至再灌流後十四天內的機械性痛覺異常。我們另於組織缺血前、缺血後剛開始再灌流、再灌流後二小時及七天等四個時間點,分別取老鼠同側的腳掌皮膚和脊髓組織,以免疫組織染色定量前胸腺素α陽性表現的細胞比例。

    結果: 我們的小鼠慢性缺血疼痛模型符合文獻上典型的二階段機械性痛覺異常,分別於再灌流後二小時、及三至七天間達到疼痛最大值。在同側腳掌皮膚組織裡,前胸腺素α的表現量於缺血後剛開始再灌流(72.8±7.6%)及再灌流後二小時(72.7±2.2%)這二個時間點,與未執行缺血傷害的對照組(44.4%±0%)相比有顯著升高(p=0.012及0.012),並於再灌流後七天時回到對照組水平(36.5±6.2%, p=0.458)。而於同側脊髓背角組織內,前胸腺素α的表現量待到再灌流後七天,與對照組相比才出現顯著提高(48.9±3.3% vs 22.8±4.4%, p=0.005)。

    結論: 於缺血後剛開始再灌流及再灌流後二小時的同側腳掌皮膚組織內,及再灌流後七天的同側脊髓背角組織裡可見前胸腺素α的表現量顯著增加,恰與小鼠慢性缺血疼痛模型的二階段疼痛行為及時序相呼應。此結果顯示前胸腺素α有調節複雜性局部疼痛症候群的角色。

    PURPOSE: Complex regional pain syndrome (CRPS) is a disabling painful disorder with various courses and unclear mechanism. Its pathophysiology includes inflammatory process, peripheral and central sensitization, ischemia-reperfusion injury, sympathetically mediated condition, etc. Chronic post-ischemic pain (CPIP) model in mice expresses early hyperemia with reperfusion injury, followed by long lasting mechanical allodynia. These two painful stages resembles the warm and cold phases of CRPS type I in human. The increased interleukin-1β and nuclear factor-κB in the local tissue and innervating spinal cord are related to the painful behaviors seen in CPIP model. Prothymosin α is a mediator of immunoactivity and inflammation, and is reported to have neuroprotective effect on ischemia. This study aims to explore the potential role of prothymosin α in CRPS.

    EXPERIMENTAL DESIGN: The mechanical allodynia in CPIP model was induced by 3-hour ischemia-reperfusion (I/R) injury. The von Frey hairs test was to evaluate the hind paw withdraw threshold, which was negatively correlated with the mechanical allodynia behaviors, from before I/R injury to 14 days post I/R injury. We harvested the skin of ipsilateral hind paw and the spinal cord tissue before and at the timing of 0 hour, 2 hours and 7 days after I/R injury. We used immunohistochemistry analysis for the quantification of the percentage of prothymosin α-positive cell.

    RESULTS: The mice in our CPIP model showed typical two stages of mechanical allodynia, with the lowest withdraw threshold and worst pain at 2 hours and 3~7 days after I/R injury. The percentage of prothymosin α-positive cell in the ipsilateral epidermis significantly increased at 0 hour (72.8±7.6%) and 2 hours (72.7±2.2%) post I/R injury as compared to non-CPIP control group (44.4±0%) (p=0.012 and 0.012, respectively), and returned to baseline level at 7 days post I/R injury (36.5±6.2%, p=0.458). In contrast, the significant elevation of prothymosin α level in ipsilateral spinal cord dorsal horn was only noted at 7 days post I/R injury when compared with control group (48.9±3.3% vs 22.8±4.4%, p=0.005).

    CONCLUSIONS: The increment of prothymosin α in the ipsilateral epidermis at 0 hour and 2 hours post I/R injury, and in the ipsilateral spinal cord dorsal horn at 7 days post I/R injury might be correlated with the characteristics of two-stage pain pattern in CPIP model. Prothymosin α might have a potential role to modulate the CRPS.

    Abstract in Chinese..........i Abstract in English..........ii Acknowledgement..........iii Index of Figures...........v Abbreviations..........vi Introduction...........1 1. Complex regional pain syndrome (CRPS)......1 2. CRPS: Subtype..........1 3. CRPS: Pathophysiology.........3 4. Animal model of CRPS.........5 5. Prothymosin-alpha (ProT-α).......6 Specific Aims...........8 Significance..........8 Research Design and Methods.........9 1. Animals..........9 2. Mice CPIP model.........9 3. Neurobehavioral analysis........10 4. Immunohistochemistry (IHC) analysis......10 5. Image analysis and cell counting.......11 6. Statistical analysis........11 Results............12 1. The nature time-course of hind paw withdraw threshold in CPIP model.12 2. The ProT-α positive cell in the epidermis.....12 3. The ProT-α positive cell in the spinal cord.....12 Discussion...........14 Conclusion...........19 Future Work..........20 References...........21 Figure Legends...........27   Index of Figures Figure 1 : The nature time-course of ipsilateral hind paw withdraw threshold for mice in chronic post-ischemic pain model......27 Figure 2-1: Immunohistochemistry image for the prothymosin-α-positive cell in ipsilateral hind paw epidermis of the chronic post-ischemic pain mice...28 Figure 2-2: The percentage of prothymosin α-positive cell in the ipsilateral hind paw epidermis of the chronic post-ischemic pain mice in different time course..29 Figure 3-1: Immunohistochemistry image for the prothymosin-α-positive cell in ipsilateral spinal cord dorsal horn of the chronic post-ischemic pain mice...30 Figure 3-2: The percentage of prothymosin α-positive cell over the lamina II of ipsilateral spinal cord dorsal horn in the chronic post-ischemic pain mice in different time course..........31

    Almeida, T. F., Roizenblatt, S., & Tufik, S. (2004). Afferent pain pathways: a neuroanatomical review. Brain Res, 1000(1-2), 40-56. doi:10.1016/j.brainres.2003.10.073
    Beerthuizen, A., Stronks, D. L., Van't Spijker, A., Yaksh, A., Hanraets, B. M., Klein, J., & Huygen, F. J. (2012). Demographic and medical parameters in the development of complex regional pain syndrome type 1 (CRPS1): prospective study on 596 patients with a fracture. Pain, 153(6), 1187-1192. doi:10.1016/j.pain.2012.01.026
    Berta, T., Park, C. K., Xu, Z. Z., Xie, R. G., Liu, T., Lu, N., . . . Ji, R. R. (2014). Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-alpha secretion. Journal of Clinical Investigation, 124(3), 1173-1186. doi:10.1172/JCI72230
    Bharwani, K. D., Dik, W. A., Dirckx, M., & Huygen, F. (2019). Highlighting the Role of Biomarkers of Inflammation in the Diagnosis and Management of Complex Regional Pain Syndrome. Molecular Diagnosis & Therapy, 23(5), 615-626. doi:10.1007/s40291-019-00417-x
    Bharwani, K. D., Dirckx, M., Stronks, D. L., Dik, W. A., Schreurs, M. W. J., & Huygen, F. (2017). Elevated Plasma Levels of sIL-2R in Complex Regional Pain Syndrome: A Pathogenic Role for T-Lymphocytes? Mediators of Inflammation, 2017, 2764261. doi:10.1155/2017/2764261
    Birklein, F., & Schlereth, T. (2015). Complex regional pain syndrome-significant progress in understanding. Pain, 156 Suppl 1, S94-103. doi:10.1097/01.j.pain.0000460344.54470.20
    Birklein, F., & Schmelz, M. (2008). Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neuroscience Letters, 437(3), 199-202. doi:10.1016/j.neulet.2008.03.081
    Bove, G. M. (2009). Focal nerve inflammation induces neuronal signs consistent with symptoms of early complex regional pain syndromes. Experimental Neurology, 219(1), 223-227. doi:10.1016/j.expneurol.2009.05.024
    Bruehl, S. (2010). An update on the pathophysiology of complex regional pain syndrome. Anesthesiology, 113(3), 713-725. doi:10.1097/ALN.0b013e3181e3db38
    Bruehl, S., Harden, R. N., Galer, B. S., Saltz, S., Bertram, M., Backonja, M., . . . Stanton-Hicks, M. (1999). External validation of IASP diagnostic criteria for Complex Regional Pain Syndrome and proposed research diagnostic criteria. International Association for the Study of Pain. Pain, 81(1-2), 147-154.
    Bruehl, S., Maihofner, C., Stanton-Hicks, M., Perez, R. S., Vatine, J. J., Brunner, F., . . . Harden, R. N. (2016). Complex regional pain syndrome: evidence for warm and cold subtypes in a large prospective clinical sample. Pain, 157(8), 1674-1681. doi:10.1097/j.pain.0000000000000569
    Chen, W., Walwyn, W., Ennes, H. S., Kim, H., McRoberts, J. A., & Marvizon, J. C. (2014). BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals. European Journal of Neuroscience, 39(9), 1439-1454. doi:10.1111/ejn.12516
    Coderre, T. J., Xanthos, D. N., Francis, L., & Bennett, G. J. (2004). Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain, 112(1-2), 94-105. doi:10.1016/j.pain.2004.08.001
    de Mos, M., de Bruijn, A. G., Huygen, F. J., Dieleman, J. P., Stricker, B. H., & Sturkenboom, M. C. (2007). The incidence of complex regional pain syndrome: a population-based study. Pain, 129(1-2), 12-20. doi:10.1016/j.pain.2006.09.008
    de Mos, M., Laferriere, A., Millecamps, M., Pilkington, M., Sturkenboom, M. C., Huygen, F. J., & Coderre, T. J. (2009). Role of NFkappaB in an animal model of complex regional pain syndrome-type I (CRPS-I). Journal of Pain, 10(11), 1161-1169. doi:10.1016/j.jpain.2009.04.012
    Dirckx, M., Schreurs, M. W., de Mos, M., Stronks, D. L., & Huygen, F. J. (2015). The prevalence of autoantibodies in complex regional pain syndrome type I. Mediators of Inflammation, 2015, 718201. doi:10.1155/2015/718201
    Dirckx, M., Stronks, D. L., Groeneweg, G., & Huygen, F. J. (2012). Effect of immunomodulating medications in complex regional pain syndrome: a systematic review. Clin J Pain, 28(4), 355-363. doi:10.1097/AJP.0b013e31822efe30
    Dirckx, M., Stronks, D. L., van Bodegraven-Hof, E. A., Wesseldijk, F., Groeneweg, J. G., & Huygen, F. J. (2015). Inflammation in cold complex regional pain syndrome. Acta Anaesthesiologica Scandinavica, 59(6), 733-739. doi:10.1111/aas.12465
    Gallagher, J. J., Tajerian, M., Guo, T., Shi, X., Li, W., Zheng, M., . . . Clark, J. D. (2013). Acute and chronic phases of complex regional pain syndrome in mice are accompanied by distinct transcriptional changes in the spinal cord. Molecular Pain, 9, 40. doi:10.1186/1744-8069-9-40
    Ganty, P., & Chawla, R. (2013). Complex regional pain syndrome: recent updates. BJA Education, 14(2), 79-84. doi:10.1093/bjaceaccp/mkt043
    Gorodkin, R., Moore, T., & Herrick, A. (2004). Assessment of endothelial function in complex regional pain syndrome type I using iontophoresis and laser Doppler imaging. Rheumatology (Oxford, England), 43(6), 727-730. doi:10.1093/rheumatology/keh158
    Guo, T. Z., Offley, S. C., Boyd, E. A., Jacobs, C. R., & Kingery, W. S. (2004). Substance P signaling contributes to the vascular and nociceptive abnormalities observed in a tibial fracture rat model of complex regional pain syndrome type I. Pain, 108(1-2), 95-107. doi:10.1016/j.pain.2003.12.010
    Guo, T. Z., Wei, T., Li, W. W., Li, X. Q., Clark, J. D., & Kingery, W. S. (2014). Immobilization contributes to exaggerated neuropeptide signaling, inflammatory changes, and nociceptive sensitization after fracture in rats. Journal of Pain, 15(10), 1033-1045. doi:10.1016/j.jpain.2014.07.004
    Hsiao, H. T., Lin, Y. C., Wang, J. C., Tsai, Y. C., & Liu, Y. C. (2016). Hypoxia inducible factor-1alpha inhibition produced anti-allodynia effect and suppressed inflammatory cytokine production in early stage of mouse complex regional pain syndrome model. Clinical and Experimental Pharmacology and Physiology, 43(3), 355-359. doi:10.1111/1440-1681.12536
    Huygen, F. J., De Bruijn, A. G., De Bruin, M. T., Groeneweg, J. G., Klein, J., & Zijlstra, F. J. (2002). Evidence for local inflammation in complex regional pain syndrome type 1. Mediators of Inflammation, 11(1), 47-51. doi:10.1080/09629350210307
    Jeon, S. Y., Seo, S., Lee, J. S., Choi, S. H., Lee, D. H., Jung, Y. H., . . . Kang, D. H. (2017). [11C]-(R)-PK11195 positron emission tomography in patients with complex regional pain syndrome: A pilot study. Medicine (Baltimore), 96(1), e5735. doi:10.1097/MD.0000000000005735
    Ji, R. R., Nackley, A., Huh, Y., Terrando, N., & Maixner, W. (2018). Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology, 129(2), 343-366. doi:10.1097/ALN.0000000000002130
    Jung, Y. H., Kim, H., Jeon, S. Y., Kwon, J. M., Lee, W. J., Kim, Y. C., . . . Kang, D. H. (2019). Brain Metabolites and Peripheral Biomarkers Associated with Neuroinflammation in Complex Regional Pain Syndrome Using [11C]-(R)-PK11195 Positron Emission Tomography and Magnetic Resonance Spectroscopy: A Pilot Study. Pain Med, 20(3), 504-514. doi:10.1093/pm/pny111
    Kharkar, S., Venkatesh, Y. S., Grothusen, J. R., Rojas, L., & Schwartzman, R. J. (2012). Skin biopsy in complex regional pain syndrome: case series and literature review. Pain Physician, 15(3), 255-266.
    Kohr, D., Singh, P., Tschernatsch, M., Kaps, M., Pouokam, E., Diener, M., . . . Blaes, F. (2011). Autoimmunity against the beta2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. Pain, 152(12), 2690-2700. doi:10.1016/j.pain.2011.06.012
    Kohr, D., Tschernatsch, M., Schmitz, K., Singh, P., Kaps, M., Schafer, K. H., . . . Blaes, F. (2009). Autoantibodies in complex regional pain syndrome bind to a differentiation-dependent neuronal surface autoantigen. Pain, 143(3), 246-251. doi:10.1016/j.pain.2009.03.009
    Laferriere, A., Millecamps, M., Xanthos, D. N., Xiao, W. H., Siau, C., de Mos, M., . . . Coderre, T. J. (2008). Cutaneous tactile allodynia associated with microvascular dysfunction in muscle. Molecular Pain, 4, 49. doi:10.1186/1744-8069-4-49
    Littlejohn, G. (2015). Neurogenic neuroinflammation in fibromyalgia and complex regional pain syndrome. Nature Reviews: Rheumatology, 11(11), 639-648. doi:10.1038/nrrheum.2015.100
    Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-kappaB signaling in inflammation. Signal Transduct Target Ther, 2. doi:10.1038/sigtrans.2017.23
    Marinus, J., Moseley, G. L., Birklein, F., Baron, R., Maihofner, C., Kingery, W. S., & van Hilten, J. J. (2011). Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurol, 10(7), 637-648. doi:10.1016/S1474-4422(11)70106-5
    Oaklander, A. L., Rissmiller, J. G., Gelman, L. B., Zheng, L., Chang, Y., & Gott, R. (2006). Evidence of focal small-fiber axonal degeneration in complex regional pain syndrome-I (reflex sympathetic dystrophy). Pain, 120(3), 235-243. doi:10.1016/j.pain.2005.09.036
    Retamal, J., Reyes, A., Ramirez, P., Bravo, D., Hernandez, A., Pelissier, T., . . . Constandil, L. (2018). Burst-Like Subcutaneous Electrical Stimulation Induces BDNF-Mediated, Cyclotraxin B-Sensitive Central Sensitization in Rat Spinal Cord. Frontiers in Pharmacology, 9, 1143. doi:10.3389/fphar.2018.01143
    Ribbers, G. M., Oosterhuis, W. P., van Limbeek, J., & de Metz, M. (1998). Reflex sympathetic dystrophy: is the immune system involved? Arch Phys Med Rehabil, 79(12), 1549-1552. doi:10.1016/s0003-9993(98)90418-x
    Samara, P., Karachaliou, C. E., Ioannou, K., Papaioannou, N. E., Voutsas, I. F., Zikos, C., . . . Voelter, W. (2017). Prothymosin Alpha: An Alarmin and More. Current Medicinal Chemistry, 24(17), 1747-1760. doi:10.2174/0929867324666170518110033
    Sandroni, P., Benrud-Larson, L. M., McClelland, R. L., & Low, P. A. (2003). Complex regional pain syndrome type I: incidence and prevalence in Olmsted county, a population-based study. Pain, 103(1-2), 199-207. doi:10.1016/s0304-3959(03)00065-4
    Schinkel, C., Gaertner, A., Zaspel, J., Zedler, S., Faist, E., & Schuermann, M. (2006). Inflammatory mediators are altered in the acute phase of posttraumatic complex regional pain syndrome. Clin J Pain, 22(3), 235-239. doi:10.1097/01.ajp.0000169669.70523.f0
    Siegel, S. M., Lee, J. W., & Oaklander, A. L. (2007). Needlestick distal nerve injury in rats models symptoms of complex regional pain syndrome. Anesth Analg, 105(6), 1820-1829, table of contents. doi:10.1213/01.ane.0000295234.21892.bc
    Su, B. H., Tseng, Y. L., Shieh, G. S., Chen, Y. C., Shiang, Y. C., Wu, P., . . . Wu, C. L. (2013). Prothymosin alpha overexpression contributes to the development of pulmonary emphysema. Nat Commun, 4, 1906. doi:10.1038/ncomms2906
    Su, Y. C., Ou, H. Y., Wu, H. T., Wu, P., Chen, Y. C., Su, B. H., . . . Wu, C. L. (2015). Prothymosin-alpha Overexpression Contributes to the Development of Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 100(11), 4114-4123. doi:10.1210/jc.2015-2277
    Subbarao, J., & Stillwell, G. K. (1981). Reflex sympathetic dystrophy syndrome of the upper extremity: analysis of total outcome of management of 125 cases. Arch Phys Med Rehabil, 62(11), 549-554.
    Sukhacheva, E. A., Evstafieva, A. G., Fateeva, T. V., Shakulov, V. R., Efimova, N. A., Karapetian, R. N., . . . Vartapetian, A. B. (2002). Sensing prothymosin alpha origin, mutations and conformation with monoclonal antibodies. Journal of Immunological Methods, 266(1-2), 185-196.
    Tang, C., Li, J., Tai, W. L., Yao, W., Zhao, B., Hong, J., . . . Xia, Z. (2017). Sex differences in complex regional pain syndrome type I (CRPS-I) in mice. Journal of Pain Research, 10, 1811-1819. doi:10.2147/JPR.S139365
    Tang, Y., Liu, L., Xu, D., Zhang, W., Zhang, Y., Zhou, J., & Huang, W. (2018). Interaction between astrocytic colony stimulating factor and its receptor on microglia mediates central sensitization and behavioral hypersensitivity in chronic post ischemic pain model. Brain Behav Immun, 68, 248-260. doi:10.1016/j.bbi.2017.10.023
    Thibault, K., Lin, W. K., Rancillac, A., Fan, M., Snollaerts, T., Sordoillet, V., . . . Pezet, S. (2014). BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain. J Neurosci, 34(44), 14739-14751. doi:10.1523/JNEUROSCI.0860-14.2014
    Trang, T., Beggs, S., & Salter, M. W. (2011). Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biology, 7(1), 99-108. doi:10.1017/S1740925X12000087
    Tsai, Y. S., Jou, Y. C., Lee, G. F., Chen, Y. C., Shiau, A. L., Tsai, H. T., . . . Tzai, T. S. (2009). Aberrant prothymosin-alpha expression in human bladder cancer. Urology, 73(1), 188-192. doi:10.1016/j.urology.2008.05.031
    Tsuda, M. (2019). Microglia-Mediated Regulation of Neuropathic Pain: Molecular and Cellular Mechanisms. Biological and Pharmaceutical Bulletin, 42(12), 1959-1968. doi:10.1248/bpb.b19-00715
    Ueda, H. (2009). Prothymosin alpha and cell death mode switch, a novel target for the prevention of cerebral ischemia-induced damage. Pharmacology and Therapeutics, 123(3), 323-333. doi:10.1016/j.pharmthera.2009.05.007
    Ueda, H., Matsunaga, H., Uchida, H., & Ueda, M. (2010). Prothymosin alpha as robustness molecule against ischemic stress to brain and retina. Annals of the New York Academy of Sciences, 1194, 20-26. doi:10.1111/j.1749-6632.2010.05466.x
    Wang, L. C., Wu, C. L., Cheng, Y. Y., & Tsai, K. J. (2017). Deletion of Nuclear Localizing Signal Attenuates Proinflammatory Activity of Prothymosin-Alpha and Enhances Its Neuroprotective Effect on Transient Ischemic Stroke. Molecular Neurobiology, 54(1), 582-593. doi:10.1007/s12035-015-9671-7
    Wang, Q., Tang, X. N., & Yenari, M. A. (2007). The inflammatory response in stroke. Journal of Neuroimmunology, 184(1-2), 53-68. doi:10.1016/j.jneuroim.2006.11.014
    Woolf, C. J. (2011). Central sensitization: implications for the diagnosis and treatment of pain. Pain, 152(3 Suppl), S2-15. doi:10.1016/j.pain.2010.09.030
    Xanthos, D. N., & Sandkuhler, J. (2014). Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nature Reviews: Neuroscience, 15(1), 43-53. doi:10.1038/nrn3617
    Yeo, J., Jung, H., & Lee, H. (2017). Effects of Glutathione on Mechanical Allodynia and Central Sensitization in Chronic Postischemic Pain Rats. Pain Res Manag, 2017, 7394626. doi:10.1155/2017/7394626

    無法下載圖示 校內:2024-12-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE