簡易檢索 / 詳目顯示

研究生: 孫宜平
Reddy, Palagiri Sunil Kumar
論文名稱: 立方衛星之微型脈衝電漿推進器之發展
Development of Micro-scale Pulsed Plasma Thruster for Cube Satellite
指導教授: 李約亨
Li, Yueh-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 75
中文關鍵詞: 脈衝電漿推進器氣體誘發脈衝電漿推進器電力推進三根朗謬爾探針.
外文關鍵詞: Pulsed Plasma Thruster, Gas initiated Pulsed Plasma thruster, Electric propulsion, Langmuir triple probe.
相關次數: 點閱:164下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脈衝式電漿推進器(PPT)是一種利用電場與磁場交互作用,加速電漿來產生推力的電力推進裝置,PPT是最具有發展希望的電力推進裝置之一,且在1964年已首次藉由PPT成功發射兩個蘇聯探針Zond2 和 Zond3。由於PPT具有低成本、設計簡單、重量輕與消耗功率少等特性,在微衛星姿態控制與位置保持上達到很好的效果。
    本實驗室研究兩種不同的PPT原型,一個是固體供給PPT,另一個是氣體誘發PPT,固體供給PPT最為常見且結構非常簡單,其利用鐵氟龍當燃料搭配火星塞來誘發放電,在壓力8×10-5 torr的高真空條件下,測試不同的電極間距,結果指出每一發脈衝所產生的衝量會隨著電極間距增加而增加。另外也有測試不同的輸入能量,發現每一發脈衝所產生的衝量也會隨著輸入能量增加而增加,在電極間距為15mm、輸入能量25焦耳的條件下,單發脈衝所產生的最大衝量為256.98 µN-sec。三根朗謬爾探針用來估計加速排出電漿中的電子密度,在儲存能量6.25焦耳且電極間距25mm的條件下,距離推進器出口30mm的地方電子密度為8×1020 m-3。
    在氣體誘發PPT方面,當電極間產生足夠的電離氣體時,會使電容造成放電,氬氣用來當作推進劑與誘發器來誘發放電,在壓力1.6×10-4 torr的高真空、氣體流率1sccm到9sccm、電極間距1mm與3mm的條件下測試,所有氣體流率都成功放電且擊穿電壓小於大氣環境下的擊穿電壓,最大單發脈衝產生的衝量達到1.59µN-sec.

    Pulsed Plasma Thruster (PPT) is a form of electric propulsion device in which the plasma is accelerated by the interaction between pulse currents and magnetic fields to create thrust. It is one of the most promising electric propulsion device and were the first form to be flown to space on two soviet probes Zond 2 and Zond 3 in 1964. As it is low cost, simple in design, light weight and consumes less total power, it has great advantage in altitude control and station keeping for small satellites. Two different thruster prototypes have been developed. One is solid fed pulsed plasma thruster and the other one is gas initiated pulsed plasma thruster. Solid fed pulsed plasma thruster is very simple and most commonly used thruster in which Teflon is used as propellant and spark plug is used to initiate the discharge. The thruster was tested in high vacuum condition (8×10-5torr) with different gaps and the results showed that the impulse bit increased with the increase in electrode gap. It was also tested with different energies and rise in impulse bit with the increase in energy was observed, the maximum impulse bit seen is 256.98µN-sec at 25J for 15mm electrode gap. Triple Langmuir probe was used to estimate the electron density in the plasma that was accelerated out of the Thruster. The test showed the electron density at 30mm away from the nozzle was 8×1020 m-3 when the stored energy was 6.25J and electrode gap is 25mm. In gas initiated pulsed plasma thruster, the capacitor gets discharged by ionizing gas between electrodes, argon was used as both propellant and initiator for discharge. The thruster was tested in high vacuum (1.6×10-4torr) condition with different flow rates from 1sccm to 9sccm and a gap distance of 1mm and 3mm. The discharge was successful at all flow rates and the maximum impulse bit achieved was 1.59µN-sec.

    摘要..........................................................I ABSTRACT ....................................................II ACKNOWLEDGEMENT.............................................III CONTENTS ....................................................IV LIST OF TABLES .............................................VII LIST OF FIGURES ...........................................VIII NOMENCLATURE.................................................XI CHAPTER 1 INTRODUCTION........................................1 1-1 Electric Propulsion ..................................1 1-1-1 Electrothermal Propulsion.....................1 1-1-2 Electrostatic Propulsion.....................3 1-1-3 Electromagnetic Propulsion...................4 1-2 Application of Electric Propulsion...................5 1-3 CubeSat..............................................6 1-4 Motivation and Overview..............................7 CHAPTER 2 LITERATURE REVIEW...................................9 2-1 Pulsed Plasma Thruster...............................9 2-1-1 Types of PPT.................................10 2-2 Main subsystems of PPT..............................11 2-2-1 Electrodes..................................11 2-2-2 Propellant..................................12 2-2-3 Initiator...................................14 2-2-4 Power Subsystem.............................16 2-3 Parametric Study....................................21 2-4 Breakdown Voltage and Paschen’s law................23 2-5 Plasma Plume........................................25 2-5-1 Plasma......................................25 2-5-2 Langmuir Triple Probe.......................26 2-6 Flight of PPT.......................................30 CHAPTER 3 SOLID FED PULSED PLASMA THRUSTER...................31 3-1 Concept and operational process.....................31 3-2 Experimental Apparatus..............................32 3-3 Experiments.........................................33 3-3-1 Testing of S-PPT in atmosphere...............34 3-3-2 Testing of S-PPT in Vacuum condition.........39 3.4 Results and Discussion..............................44 CHAPTER 4 GAS INITIATED PULSED PLASMA THRUSTER...............53 4-1 Concept and operational process ....................53 4-2 Experimental Apparatus..............................54 4-3 Experiments.........................................55 4-3-1 Testing of G-PPT in atmosphere....................56 4-3-2 Testing of G-PPT in Vacuum........................57 4-4 Results and Discussion..............................63 CHAPTER 5 CONCLUSION AND FUTURE WORKS........................69 5-1 Conclusion...........................................69 5-2 Future works.........................................69 REFERENCE....................................................71 APPENDIX.....................................................74

    [1] D.M. Goebel, I. Katz (2008). Fundamentals of electric propulsion: Ion and Hall Thrusters. California Institute of technology. USA.
    [2]. S.L. Vinjam (2014). Theory of propulsion: Electric Propulsion: Electric Propulsion. SlideShare. India.
    [3]. Ian J. E. Jordon (2000). Electric Propulsion: Which one for my space craft. Whiting School of Engineering.
    [4]. O. Raisanen (2012). Gridded Ion thruster, Wikipedia.
    [5] http://www.al.t.u-tokyo.ac.jp/hall_e.html.
    [6] R. G. Jahn, E.Y.Choueiri (2002). Electric Propulsion. Princeton University.
    [7] P. V. Shaw (2011). Pulsed Plasma Thruster for small satellites. University of Surrey.
    [8] P. Gessini et al., (2013). Low power ablative pulsed plasma thruster. IEPC – 2013 – 344, George Washington Univ., USA.
    [9] D. J. Palumbo, W.J. Guman (1976). Effects of propellant and electrode Geometry on Pulsed Ablative Plasma Thruster Performance. Journal of Spacecraft and Rocket, Vol.13 (3), pp. 163-167.
    [10] L. A. Arrington, T.W. Haag, E. J. Pencil, N. J. Meckel (1997). Performance Comparisons of Pulsed Plasma Thruster Electrode Configurations. IEPC – 1997 - 127, Cleveland, Ohio, USA.
    [11] T. Schonherr, A. Nawaz, G. Herdrich, H.-P. Röser, M. Auweter-Kurtz, (2009). Influence of electrode shape on performance of Pulsed Magneto dynamic Thruster SIMP-LEX. Journal of Propulsion and Power, Vol. 25 (2), pp. 380-386.
    [12] D. Hou, W. Zhang, X. Kang, P. Wang, (2008). Effect of ceramic nozzle on performance of Pulsed Plasma Thruster. ELSEVIER - Aerospace Science and Technology, Vol 12, pp. 573-578.
    [13] K. Kawahara et al., (2003). Study on Plume characteristics of Pulsed Plasma Thrusters. IEPC – 2003 - 0160, Touluse, France.
    [14] T. Schonherr, Y. Abe, K. Okamura, H. Koizumi, Y. Arakawa, K. Komurasaki. Influence of Propellant in Discharge Process of PPT. AIAA.
    [15] R. I. Marques, S. B Gabriel, F. de. S Costa., (2007). High Frequency burst pulsed plasma thruster research at university of Southampton. IEPC – 2007 - 300, Florence, Italy.
    [16] Z. Wu, T. Huang, X. Liu, K. Xie, N. Wang (2015). Study of breakdown in an ablative pulsed plasma thruster. Physics of plasmas, vol 22 (10).
    [17] X. Z. Fang, H. J. Wu (1987). Spark plug for Pulsed Plasma Thruster. IEPC – 1987 – 1048. Colorado Springs, U.S.A.
    [18] Y. Oigawa, H. Horisawa, I. Funaki (2013). Improvement of Laser Electromagnetic Hybrid Thruster. IEPC-2013-265. George Washington Univ., USA.
    [19] P. Gloersen, B. Gorowitz, J. T. Kenney (1965). Energy Efficiency Trends in a Coaxial Gun Plasma Engine System. AIAA Journal. Vol 4 (3), pp: 436-441.
    [20] A. Kushari, and K. Loh (2010). Operation of auto initiated pulsed plasma thruster. Emerald-Aircraft Engineering and aerospace technology. Vol. 82 (8), PP. 83-90.
    [21] F. F. Chen (1983). Introduction to Plasma Physics and Controlled Fusion. Plasma Physics volume 1, University of California.
    [22] J. K. Ziemer, R. A. Petr (2002). Performance of gas fed pulsed plasma thruster using water vapor as propellant. AIAA – 2002 - 4273. Indianapolls, Indiana.
    [23] M. S. Glascock., J. L. Rovey, S. Williams, J. Thrasher (2016). Observation of Late-Time Ablation in Electric Solid Propellant Pulsed Micro thrusters. AIAA - 2016 - 4845.
    [24] A. Rezaeiha, M Anbarloui, M. farshchi (2011). Design, Development and Operation of a Laboratory PPT for first time in west Asia. JSASS – 2011. Vol 9, pp: 45-50.
    [25] W. J. Guman (1975). Solid Propellant Pulsed Plasma Propulsion system Design. 11th IEPC – 1975. New Orleans, USA.
    [26] H. Bluhm (2006). Pulsed Power System Principles and Applications. Springer, Germany, 2006.
    [27] http://simpleenglishchemistry.blogspot.tw/2015/10/elements.html
    [28] Naz, M.Y., et al., (2011). Double and triple Langmuir probes measurement in inductively coupled nitrogen plasma. Progress in electromagnetic research. 2011 p. 113-128.
    [29] M. Gagne, N. Gatsonis, J. Blandino, J. Ziemer, E. Choueiri (1999). Analysis of Triple Langmuir Probe Measurements in the Near-Exit Region of a gas-fed Pulsed Plasma Thruster. AIAA – 1999.
    [30] R. Eckman, L. Byrne, N. A. Gatsonis, E. J. Pencil (2001). Triple Langmuir Probe Measurements in the Plume of a Pulsed Plasma Thruster. Journal of Propulsion and Power. Vol 17 (4), pp: 762-771
    [31] Z. Zhang., H. Tang (2011). Electrostatic probe measurement in a 4J pulsed plasma thruster. IEPC-2011-198. Wiesbaden, Germany.
    [32] T. Schonherr, F. Nees, Y. Arakawa, K. Komurasaki, G. Herdrich (2013). Characteristics of Plasma Properties on an Ablative Pulsed Plasma Thruster. Physics of Plasmas, Vol 20 (3), March – 2013.
    [33] https://en.wikipedia.org/wiki/Paschen%27s_law#/media/File:Paschen_curves.svg

    下載圖示 校內:2020-01-20公開
    校外:2020-02-20公開
    QR CODE