簡易檢索 / 詳目顯示

研究生: 陳寬
Chen, Kuan
論文名稱: 氯輔助成長奈米鑽石薄膜及奈米鑽石/碳化矽複合薄膜之研究
Chlorine enhanced growth of nanocrystaline diamond films and nanocrystalline diamond/SiC composite films
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 100
中文關鍵詞: 四氯化碳碳化矽奈米鑽石熱燈絲
外文關鍵詞: carbon tetrachloride, silicon carbide, nanodiamond, hot filament
相關次數: 點閱:89下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文第一部分乃利用熱燈絲化學氣相沉積法,以CCl4/CH4/H2混合氣體作為反應物沉積奈米鑽石薄膜並測其碳源先驅物。根據SEM顯示,在固定總氣體流量及CCl4濃度時,隨CH4濃度增加,薄膜厚度有下降之趨勢。根據XRD、Raman與TEM之分析,薄膜內鑽石之平均大小隨CH4濃度增加而下降,約介於4~17nm之間。由AFM表面粗糙度分析顯示,薄膜之表面粗糙度皆小於20nm(rms)。由RGA分析顯示,本糸統中氣相含碳物種未達partial equilibrium狀態,且CH3 species為奈米鑽石薄膜之碳源先驅物。
    第二部分乃利用熱燈絲化學氣相沉積法,以SiCl4/CCl4/H2混合氣體作為反應物沉積奈米鑽石/碳化矽複合薄膜。根據鍵結及結構分析顯示在基板溫度680oC,SiCl4/CCl4=0.5/2.5%時,成長奈米鑽石/碳化矽複合薄膜。根據TEM之分析顯示鑽石/碳化矽之平均晶粒大小約為25nm,由AFM表面粗糙度分析顯示薄膜表面粗糙度為11nm(rms)。其餘之沉積物為碳化矽或石墨結構。

    Nanodiamond films have been synthesized using CCl4/CH4/H2 in a hot-filament chemical vapor deposition reactor. The thicknesses of the nanodiamond films decreased when the concentration of CH4 increased. XRD、Raman and TEM analyses show that the average grain sizes of the nanodiamond were in the ranges of 4-17nm and decreased when the concentration of CH4 increased. AFM analyses show that the nanodiamond films possess a typical rms roughness of 20nm. Growth precursor of the nanodiamond film was also investigated using RGA in this study. RGA analyses reveal that the carbon species in gas phase do not reach a partial equilibrium state. CH3 radicals are suggested to be the growth precursor of nanodiamond films in this system.
    In addition, nanodiamond/silicon carbide composite films were deposited at a SiCl4/CCl4/H2 flow rates of 0.5/2.5/97 sccm and a substrate temperature of 680℃. TEM analyses reveal that the average grain size of the nanodiamond/SiC composite film was 25nm. AFM analyses shows that the rms roughness of the composite film was 11nm.

    中文摘要....................................................I 英文摘要...................................................II 誌謝......................................................III 總目錄.....................................................IV 圖目錄...................................................VIII 表目錄....................................................XIV 第一章 緒論.................................................1 1.1 前言...................................................1 1.2 奈米鑽石薄膜...........................................1 1.3 碳化矽與奈米鑽石/碳化矽複合薄膜........................5 1.4 研究目的...............................................8 第二章 理論基礎............................................10 2.1 化學氣相沉積法........................................10 2.1.1 CVD熱力學分析.....................................10 2.1.2 CVD動力學分析.....................................11 2.2 薄膜形成模型..........................................15 2.3 CVD法沉積鑽石薄膜.....................................18 2.4 以氯化物輔助成長鑽石薄膜..............................19 2.5 鑽石成長先驅物之探討..................................19 第三章 實驗參數與研究方法..................................26 3.1 實驗流程..............................................26 3.2 系統裝置..............................................27 3.2.1 反應氣體輸送裝置...................................27 3.2.2 反應器.............................................28 3.2.3 真空及排氣裝置.....................................28 3.3 實驗材料..............................................31 3.3.1 反應物.............................................31 3.3.2 基板材料...........................................31 3.4 實驗操作步驟..........................................32 3.4.1 鎢絲前處理.........................................32 3.4.2 基板前處理.........................................34 3.4.3 薄膜沈積...........................................34 3.5 分析與鑑定............................................34 3.5.1 掃描式電子顯微鏡分析...............................34 3.5.2 拉曼光譜分析.......................................35 3.5.3 原子力顯微鏡.......................................36 3.5.4 X光繞射分析儀......................................40 3.5.5 穿透式電子顯微鏡...................................40 3.5.6 殘餘氣體分析儀.....................................40 第四章 以CCl4/CH4為碳源成長奈米鑽石薄膜之研究..............44 4.1 CH4濃度效應...........................................44 4.1.1 薄膜表面與截面型態之分析...........................44 4.1.2 薄膜結晶型態之分析.................................47 4.1.3 薄膜鍵結型態之分析.................................47 4.1.4 薄膜微結構之分析...................................51 4.1.5 薄膜表面粗糙度之分析...............................51 4.1.6 討論...............................................60 4.2 奈米鑽石薄膜成長先驅物之探討..........................61 4.2.1 C2H2/H2氣氛組成....................................61 4.2.2 CH4/H2氣氛組成.....................................61 4.2.3 CCl4/H2氣氛組成....................................62 4.2.4 CCl4/CH4/H2氣氛組成................................62 4.2.5 討論...............................................62 第五章 以CCl4/SiCl4/H2成長奈米鑽石/碳化矽複合薄膜之研究....68 5.1 CCl4濃度、SiCl4濃度及基板溫度效應.....................68 5.1.1 薄膜表面與截面型態之分析...........................68 5.1.2 薄膜結晶型態之分析.................................69 5.1.3 薄膜鍵結型態之分析.................................83 5.1.4 薄膜微結構之分析...................................83 5.1.5 薄膜表面粗糙度之分析...............................87 5.2 討論..................................................87 第六章 結論................................................94 第七章 參考文獻............................................96 作者簡介..................................................100

    1. 牟中原、陳家俊,科學發展,2000年4月,第281頁。
    2. 呂英治、洪敏雄,儀器新知,2001年6月,第21頁。
    3. 林景正、賴宏仁,工業材料,1999年9月,第102頁。
    4. 廖建勛,化工資訊,1998年2月,第20頁。
    5. K. E. Spear and J. P. Dismukes, Synthetic Diamond:Emerging CVD Science and Technology (John Wiley & Son, 1993).
    6. J. C. Anus, Thin Solid Films 216, 126 (1992).
    7. S.-T. Lee, Z. Lin and X. Jiang, Materials Science and Engineering R25, 123 (1999).
    8. 宋健民,工業材料,1995年4月,第58頁。
    9. W. Zhu , G. P. Kochanski, S. Jin, SCIENCE 282, 1471 (1998).
    10. J. D. Hwng, Y. K. Fang, Y. J. Song, and D. N. Yaung, Jpn. J. Appl. Phys. 34, 1447(1995).
    11. H. J. Kim and R. F. Davis, J. Appl. Phys. 60, 2897(1986).
    12. M. Bhatnagar and B. J. Baliga, IEEE Trans. Electron Devices 40, 645(1993).
    13. V. E. Chelnokov and A. L. Svrkin, Mater. Sci. Eng. B 46, 248(1997).
    14. H. Zhang, Z. Xu, Optical Materials 20, 177 (2002).
    15. X. J. Ning, P. Pirouz, Jr.,J. Mater. Rev.,11, 884(1996).
    16. R. Stevens, J. Mater. Sci. ,7, 517(1972).
    17. X. Jiang, and C.-P. Klages, Appl Phys. Lett. 61, 1629(1992).
    18. T. P. Ong and R. P. H. Chang, Appl. Phys. Lett. 58, 358(1991).
    19. J. Qian, J. Mater. Res. 18, 1173(2003).
    20. W. Tillmann, Int. J. Refractory Metal & Hard Mater. 18, 301(2000)
    21. I. E. Clark and P.A. Bex, Indust. Diamond Rev. 1,43(1999).
    22. F. J. Buchanan, J. A. Little, Surface and Coatings Technology 46, 219(1991).
    23. R. W. Fox, A.T. McDonald, Introduction to Fluid Mechanics (John Wiley & Son, 1985).
    24. K. E. Spear, Pure and Appl. Chem. 54, 1297(1982).
    25. K. J. Sladek, J. Electrochem. Soc.:Solid State Science 118, 654(1971).
    26. R. Kern, G. L. Lay, and J. J. Metois, Current Topics in Material Science 3, 135(1979).
    27. H. Liu and D. S. Dandy, Diamond Related Mater. 4, 1173(1995).
    28. S. Iijima, Y. Aikawa, and K. Baba, Appl. Phys. Lett. 57, 2646(1990).
    29. M. Ihara, H. Komiama and T. Okubo, Appl. Phs. Lett. 65, 1192(1994).
    30. P. A. Denning, D. A. Stevenson, Appl. Phys. Lett. 59, 1562(1992).
    31. P. K. Bachmann and R. Messier, May 15, 1989 C&EN.
    32. P. E. Pehresson, F. G. Celii, and J. E. Butler, Diamond Films And Coatings, edited by R. F. Davis (Noyes, 1993) p.69.
    33. P. K. Bachmann, in Thin Film Diamond, edited by A. Lettington and J. W. Steeds (Champman & Hall, London, 1994) p.31-53.
    34. R. A. Rudder, G. C. Hudson, J. B. Posthill, R. E. Thomas, and R. J. Markunas, Appl. Phys. Lett. 59, 791(1991).
    35. F. C.-N. Hong, J.-C. Hsieh, J.-J. Wu, G.-T. Liang, and L.H. Hwang, Diamond Related Mater. 2, 365(1993).
    36. T. Kotaki, N. Horri, H. Isono, and S. Matsumoto, J. Electrochem. Soc. 143, 2003(1996).
    37. R. S. Tsang, C. A. Rego, P. W. May, j. Thumim, M. N. Ashfold, K. N. Rosser, C. M. Younes, and M. J. Holt, Diamond Related Mater. 5, 359(1996).
    38. B. J. Bai, C. J. Chu, D. E. Patterson, R. H. Hauge, and J. L. Margrave, J. Mater. Res. 8, 233(1993).
    39. R. C. Weast, CRC Handbook of Chemistry and Physics, CRC, Boca Raton, Florid, 1998.
    40. F. Westly, D. H. Frizzell, J. T. Herron, R. F. Hampson, and W. G. Mallard, NIST Chemical Kinetics Database, Version 6.01, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD.
    41. F. C.-N. Hong, G.-T. lian, J.-J. Wu, D. Chang, and J.-C. Hsieh, Appl. Phys. Lett. 63, 3149(1993).
    42. C. J. Chu, M. P. D’Evelyn, R. H. Hauge, and J. L. Margrave, J. Mater. Res. 5, 2405(1990).
    43. P. A. Dennig, H. Shiomi, and D.A. Stevenson, Thin Solid Films 212, 63(1992).
    44. S. J. Harris, Appl. Phys. Lett. 56, 2298(1990).
    45. M. Frenklech and K. E. Spear, J. Mater. Res. 3, 133(1988).
    46. http://www.airliquide.com/en/business/products/gases/gasdata/ind ex.asp?GasID=60
    47.http://www.hxc.sdnu.edu.cn/hxx/jiaoxuekejian/wuhuashiyan/IV-5.HTM
    48. S. Okoli, R. Aubner, and .Lux, Surf. Coat. Technol. 47, 585(1991).
    49. 汪建民,材料分析,民全書局(1998)。
    50. http://www.topometrix.com/spmguide/1-2-1.htm
    51. D. A. Skoog, F. J. Holler, T. A. Niean, Principles of Instrumental Analysis, fifth edition, Saunders College Publishing,1997.
    52. P. E. Miller, M. B. Denton, Anal. Chem., 63, 619(1986).
    53. B. D. Cullity, Elements of X-ray Diffraction, second edition, Addison- Wesley Publishing Company, INC, p.102.
    54. P. T. B. Shaffer, Acta Cryst. B25, 477(1969).
    55. K. Nakamura, M. Fujitsuka, and M. Kitajima, Phys. Rev. B 41, 12260(1990).
    56. M. J. Lipp, Phys.Rev. B 56, 565978(1997).
    57. S. K. Sze, N. Siddique, J. J. Sloan, and R. Escribano, Atmospheric Environment 35, 561(2001).
    58. S. Nakashima, and H. Harima, Phys. Stat. Sol. A 169, 39(1997).

    下載圖示 校內:立即公開
    校外:2003-08-13公開
    QR CODE