| 研究生: |
黃正豐 Huang, Jene-Fong |
|---|---|
| 論文名稱: |
以兩階段燒結法製備SiC/Ti3SiC2/TiC陶瓷複合材料之研究 Investigation of silicon carbide /titanium silicon carbide /titanium carbide ceramic composites fabricated by two step sintering |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | SiC / Ti3SiC2 / TiC複合陶瓷 、兩階段燒結 |
| 外文關鍵詞: | two step sintering, SiC/Ti3SiC2/TiC ceramic comp |
| 相關次數: | 點閱:68 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文摘要
本研究利用不同莫耳比TiC : Si =3 : 1與TiC : Si =3 : 2原始粉末,以熱壓燒結方式製備SiC / Ti3SiC2 / TiC陶瓷複合材料。於本系統中,由於起始粉末含有Si (熔點=1414℃),為避免Si的熔融,本實驗採用兩階段燒結方式,於第一段燒結選用1350℃持溫,之後再升至較高溫度1500℃持溫以達緻密化。
實驗結果發現,在TiC : Si =3 : 2莫耳比參數下會導致生成TiSi2雜相。為降低TiSi2雜相減少Si含量,而在3 TiC /1 Si莫耳比,於1350℃持溫2小時再升至1500℃持溫1小時之升溫參數下,發現可有效去除TiSi2雜相,而製備SiC / Ti3SiC2 / TiC複合陶瓷。
以3 TiC /1 Si莫耳比,兩階段燒結之燒結體進行機械性質(韌性、四點抗彎)的分析,在韌性方面利用SENB方式量測,結果顯示破壞韌性值可達7.1 ± 0.3 MPa‧m1/2,觀察其破斷面可發現,第二相Ti3SiC2以裂縫轉折、晶粒脫層翹曲、糾結帶形成等能量吸收機制達到韌化效果。在強度方面,藉由四點彎曲試驗得知,該陶瓷複合材料之平均強度值為625 ± 27.7 MPa,相較於TiC陶瓷材料(四點抗彎值為420 MPa),強度有明顯提升,在強度方面可能為強化相SiC所致。
Abstract
SiC/Ti3SiC2/TiC ceramic composites were fabricated by hot-pressed sintering method with different TiC/Si molar ratio. Two step sintering was adopted to avoid Si melting and chosen 1350℃to soak then heated to 1500℃ for densification in this experiment.
The XRD analysis of sintered specimen with 3TiC/2Si (molar ratio) mixture by two-step sintering shows the existence of TiC, Ti3SiC2, SiC and TiSi2 phases. The decrease of Si content in raw powder mixture has successfully eliminated the TiSi2 second phase. The XRD analysis of two-step sintered specimen with 3TiC/1Si (molar ratio) mixture reveals that the primary phases are TiC, Ti3SiC2 and SiC phases.
The value of fracture toughness is 7.1 ± 0.3 MPa‧m1/2 and the SEM fractographs show TiC matrix is toughened by Ti3SiC2 phase addition due to crack deflection, buckling, delamination within individual grain, and kink band formation mechanism. The four-point bending strength of SiC/Ti3SiC2/TiC composite is 625 ± 27.7 MPa higher than pure TiC ceramics (420MPa) due to the strengthening effect of SiC second phase.
1.C. J. Gilbert, D. R. Boyer, M. W. Barsoum, T. El-Raghy, A. P. Tomsia and R. O. Ritchie, “Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2”‚ Scripta Mater, 42, p.761 (2000)
2.K. Shirato, D. Chen, M. W. Barsoum, T. El-Raghy and R. O. Ritchie, “Cyclic Fatigue-Crack Growth and Fracture Properties in Ti3SiC2 Ceramic at Elevated Temperatures”‚J. Am. Ceram. Soc. 84, p.2914 (2001)
3.M. W. Barsoum, T. El-Raghy, C. Rawn, W. D. Porter “Thermal properties of Ti3SiC2”, J. Phys. Chem. 60, p.429(1999)
4.M. Naka, H. Sakai, M. Maeda, H. Mori “Formation and therma stability of amorphous Ti-Si-C alloys”, Mater. Sci. Eng. A , 774, p.226(1997)
5.M. W. Barsoum, D. Brodkin, T. El-Raghy “Layered machinable ceramics for high temperature applications”, Scripta Mater. 36, p.535(1997)
6.S. B. Li, J. X. Xie, L. T. Zhang “Mechanical properties and oxidation resistance of Ti3SiC2/SiC composite synthesized by in situ displacement reaction of Si and TiC”, Materials Letters , 57, p.3048(2003)
7.S. B. Li, J. X. Xie, L. T. Zhang, “In situ synthesis of Ti3SiC2/SiC composite by displacement reaction of Si and TiC”, Mater. Sci. Eng. A , 381, p.51(2004)
8.J. F. Li, Toshiro Matsuki, and Ryuzo Watanabe, “Mechanical-Alloying -Assisted Synthesis of Ti3SiC2 Powder”, J. Am. Ceram. Soc. 85 ,p.1004(2002).
9.Krakow and Poland, “The role of liquid phase in solid combustion synthesis of Ti3SiC2”, Int. J. Mate. and Prod. Tech. 10, p.316(1995)
10.R. Radhakrishnan, C. H. Henager, J. L. Brimhall,“Synthesis of Ti3SiC2/SiC and TiSi2/SiC composites using displacement reactions in the Ti-Si-C system”, Scripta Mater. 34, p.1809(1996)
11.E. K. Storms, ”The Refractory Carbide“, Academic Press ,New York and London(1967)
12.L. E. Toth ”Transition Metal Carbides and Nitrides”, Academic Press, New York and London(1971)
13.M. W. Barsoum, “The MN+1AXN Phases : A New Class of Solids ;Thermodynamically Stable Nanolaminates ”, Prog. Solid St. Chem. 28, p.201(2000)
14.L. Farber, I. Levin, M. W. Barsoum, T. El-Raghy and T. Tzenov, “High-resolution transmission electron microscopy of some Tin+1AXn compounds ( n=1,2; A=Al or Si; X=C or N )”, J. App. Phy. 86, p.2540(1999)
15.R. Yu, Q. Zhan, L. L. He, C. Zhou and H. Q. Ye, “Polymorphism of Ti3SiC2”, J. Mater. Res. 17, p.948(2002)
16.W. Jeischko and H. Nowotny, “Die Kristallstuctur von Ti3SiC2-Ein Neuer Komplexcarbid- Typ”, Monatsch Chem. 98, p329(1967)
17.M. Amer, M. W. Barsoum, T. El-Raghy, I. Wiess, S. LeClair and D. Liptak, “The Raman spectrum of Ti3SiC2”, J. App. Phy. 84, p.5817(1998)
18.陶瓷技術手冊(下),第22章,經濟部技術處,(1994)
19.C. J. Gilbert, D. R. Boyer, M. W. Barsoum, T. El-Raghy, A. P. Tomsia and R. O. Ritchie, “Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2”, Scripta Mater.42, p.761(2000)
20.M. W. Barsoum and T. El-Raghy, “Synthesis and Characterization of a Remarkable Ceramic:Ti3SiC2”, J. Am. Ceram. Soc. 79, p.1953(1996)
21.H. Endo, M. Ueki, H. Kubo ,”Microstructure and mechanical properties of hot-pressed SiC-TiC composites”, J. Mater. Sci. 26, p.3769(1991)
22.丁儷美,二階段燒結對於氮化矽微結構與機械性質影響之研究﹐國立成功大學材料科學及工程學系碩士論文(1994)
23.C. H. Henager, J. L. Brmhall, J. P. Hirth, “Synthesis of a MoSi2-SiC composite in situ using a solid state displacement reaction”, Mater. Sci. Eng. A, 155, p.109 (1992)
24.C. H. Henager, J. L. Brmhall, L. N. Brush,“Tailoring structure and properties of composites synthesized in situ using displacement reactions”, Mater. Sci. Eng. A, 195, p.65(1995)
25.J. Pan, M. K. Surappa, R. A. Saravanan., “ Fabrication and characterization of SiC/MoSi2 composites”, Mater. Sci. Eng.A, 244, p.191(1998)
26.W. Chen﹐X. H. Wang, “Sintering dense nanocrystalline ceramics without final-stage grain growth”, Nature, 404, p.168(2000)
27.H. D. Kim, Y. J. Park, B. D. Han, “Fabrication of dense bulk nano-Si3N4 ceramics without secondary crystalline phase”, Scripta Mater. 54, p.615(2006)
28.N. J. Petch, “Cleavage Strength of Polycrystals”, J. Iron and Steel Inst.(London), 174, p.25(1953)
29.C. Zener, “Grains, Phases, and Interfaces: An Interpretation of Microstructure”, Trans. Am. Inst. Min. Metall. Eng. 175, p.15(1948)
30.Martin Sternitzke, “Review:Structural Ceramic Nanocmoposites”, J.Euro.Ceram. Soc. 17, p.1061(1997)
31.R. W. Rice, “ Toughening in Ceramics Particulate and Whisker Composites”, Ceram. Eng. Sci. Proc. 11, p.667(1990)
32.K. T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory”, Acta Metall. 31, p.565(1983)
33.J. M. Cordoba, M. J. Sayagues, M. D. Alcala, “Synthesis of Ti3SiC2 powders: Reaction mechanism”, J. Am. Ceram. Soc. 90, p.825(2007)
34.C. Racault, F. Langlais, R. Naslain, “Solid-State synthesis and characterization of the ternary phase Ti3SiC2”, J. Mater. Sci. 29, p.3384. (1994)
35.S. Arunajatesan and A. H. Carim, “Synthesis of Titanium Silicon Carbide”, J. Am. Ceram. Soc. 78, p.667(1995)
36.T. Okano, T. Yano and T. Iseki, “Synthesis and Mechanical Properties of Ti3SiC2 Ceramic”, Trans. Met. Soc. Jpn. 14, p.597(1993)
37.T. El-Raghy and M. W. Barsoum ,“Processing and Mechanical Properties of Ti3SiC2:I , Reaction Path and Microstructure Evolution”, J. Am. Ceram. Soc. 82, p.2849(1999)
38.倪沅錩,熱壓燒結碳化鈦矽之微結構及機械性質之研究,國立成功大學材料與工程學系碩士論文
39.Y. Du and J. C. Schuster, “Experimental Investigation and Thermodynamic Calculation of the Titanium-Silicon-Carbon System”, J. Am. Ceram. Soc. 83, p.197(2000)
40.K. Tang, C. A. Wang, Y. Huang ,“A study on the reaction mechanism and growth of Ti3SiC2 synthesized by hot-pressing”, Mater. Sci. Eng. A, 328 , p.206(2002)
41.Z. M. Sun, S. L. Yang, H. Hashimoto ,“Ti3SiC2 powder synthesis”, Ceramics International, 30, p.1873(2004)
42.Y. Zou, Z. M. Sun, Shuji Tada and Hitoshi Hashimoto ,“Synthesis of single-phase Ti3SiC2 with the assistance of liquid phase formation”, Journal of Alloys and Compounds, In Press(2006)
43.G. Y. Gan, X. H. Chen, J. C. Chen “Reaction path research of TiC/Si diffusion couple experiment”, J. Mater. Sci. Tech. 17, p.189(2001)
44.T. W. Lin, W. B. Cao, J. T. Li “Synthesis and properties of Ti3SiC2/SiC ceramic comoposites”, Materials Science Forum, 475, p.1243(2005)
45.Hideo Awaji , S. M. Choi, Eisuke Yagi “Mechanisms of toughening and strengthening in ceramic-based nanocomposites”, Mechanics of Materials, 34, p.411(2002)
46.S. B. Li, J. X. Xie, J. Q. Zhao, “Mechanical properties and mechanism of damage tolerance for Ti3SiC2”, Materials Letters, 57, p.119(2002)
47.Y. C. Zhou , Z. M. Sun ,“Micro-scale plastic deformation of polycrystalline Ti3SiC2 under room-temperature compression ”, J. Euro. Ceram. Soc, 21, p.1007(2001)
48.M. W. Barsoum, T. El-Raghy, Advanced Materials & Processes, 08827958, Vol. 152, Issue 1. (1997)
49.K. Kesiderio, M. D. Thouless, W. H. John, J. Am. Ceram. Soc. 81, p.1004 (1998)
50.M. Oechsner, C. Hillman, F. F. Lange, J. Am. Ceram. Soc. 79, p.1834 (1996)
51.L. Vandeperre, V. D. Biest, Key. Eng. Mater. 2013, p.132(1997)
52.E. Orowan, Nature, 149, p.463(1942)
53.Y. O. Dong, C. K. Hwan, K. Y. Jin, J. S. In, “One step synthesis of dense MoSi2–SiC composite by high-frequency induction heated combustion and its mechanical properties”, Journal of Alloys and Compounds, 395, p.174(2005)
54.X. Tong, T. Okano, “Synthesis and high temperature mechanical properties of Ti3SiC2/SiC composite”, J. Mater. Sci, 30, p.3087(1995)
55.G. Das, J. S. Mazdiuasni, and H. A. Lipsitt, ”Mechanical Properties of Polycrystalline TiC “, J. Am. Cerm. Soc. 65, p.104(1982)