簡易檢索 / 詳目顯示

研究生: 黃理敬
Huang, Li-Ching
論文名稱: 修飾拉曼標記表面以用於腦瘤細胞的標定
Surface Modification of Raman Tags for Labeling Brain Tumor Cells
指導教授: 陳宣燁
Chen, Shiuan-Yeh
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 金屬叢集二氧化矽殼表面改質生物偶合拉曼標記多型性神經膠質母細胞瘤
外文關鍵詞: core-satellate, silica shell, surface modification, bioconjuction, Raman tags, GBM
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦腫瘤手術切除的完整性對患者手術後復原極為重要,如果無法將腫瘤清除乾淨,可能導致腫瘤復發或轉移。多型性神經膠質母細胞瘤(Glioblastoma Multiforme,GBM)屬於浸潤式,手術上很難完全清除,因此發展一些顯影的方式幫助醫師解決此問題。目前5-ALA螢光分子已被FDA許可運用於手術中,成功提升腫瘤的切除率,但螢光分子的光漂白(Photobleaching)問題限制臨床的實用性,而拉曼標記的光學穩定性佳、擁有指紋般特徵的訊號、低毒性等優點,在生物影像上展現極大的潛力。
    先前本實驗室利用50 nm金粒子與20 nm金粒子,已經成功合成出核心-衛星奈米金屬叢集結構,且能穩定地發出拉曼訊號,為了確保拉曼標記結構與其拉曼訊號的穩定性,必須以二氧化矽對此結構進行封裝。本論文第一部份探討如何製厚度薄、表面平滑、完整包覆的二氧化矽殼。
    另外,生物標記最重要的是能夠針對腫瘤細胞進行標記,進行病理的檢測,因此利用抗體當作拉曼標記與細胞之間連接的分子,以達到標記的作用。本論文嘗試數種化學物質進行二氧化矽表面改質,也透過EDC與sulfo-NHS反應,將抗體連接到二氧化矽殼表面,完成拉曼標記,且經由多種方式檢驗抗體連接情形。另外也對拉曼標記進行專一性檢驗,確認標記的標靶特性。
    在拉曼標記吸附腦腫瘤細胞後,量測細胞上標記的拉曼光譜,並實際以拉曼訊號判別腫瘤細胞與正常細胞,初步模擬未來手術時用此標記分辨腫瘤組織的情形。
    整合二氧化矽殼與抗體連接的方法套用至核心-衛星奈米金屬叢集結構,完成拉曼標記,未來希望應用在腦腫瘤的拉曼影像,在手術上協助醫師完整切除多型性神經膠質母細胞瘤。

    The completeness of the surgical resection is very important. If the tumor couldn’tbe cleaned, it may lead to tumor recurrence or metastasis. Because it’s difficult to distinguish the boundary of Glioblastoma Multiforme (GBM) which is common and serious brain tumor, completely removing tumor ischallenging. Therefore, the development of imaging methods to help physicians solve this problem.Currently, 5-ALA fluorescence molecule has been used in surgery, andimproved the success rate of tumor excision. However, fluorescence molecules have the problem of photobleaching. It would limit the clinical application. Raman tags show a great potential in biological imaging because of the stable of optical characteristic, non-toxic, allowing multiple marker detection, etc.
    Previously, our group has been successfully synthesized core-satellite nanostructures by using 50 nm and 20 nm gold nanoparticles. The nanostructures have stable Raman signals. In order to make the structures stable and keep the signals correct, it is necessary to synthesize silica shell. The shell thickness of 20 nm has been achieved. The silica shellsare smooth and uniform as well.
    Moreover, biomarkers must have the ability to target the specific cell, so antibodies were chosen to combine Raman tags and cell. Several chemicals were experimented for modification of silica surface. Through the reaction of EDC and sulfo-NHS, antibodies could conjugated on silica shell. The phenomenon could observed by some checking methods.By specificity test, Raman tags of specific cellular recognition could be confirmed.
    After Raman tags labeled on brain tumor cells, their Raman spectra were measured. We tried to identify tumor cells and normal cells by Raman signals.
    We have developed a novel Raman tags. We hope that this tags can help physicians discern brain tumor during the surgery in the future.

    口試證明 I 摘要 II Abstract III 致謝 IX 目錄 X 圖目錄 XIII 表目錄 XVI 第一章 序論 1 1-1 前言 1 1-2 研究動機與目的 7 1-3 文獻回顧 8 1-4 論文架構 12 第二章 研究方法 13 2-1 二氧化矽保護層 13 2-1-1 APTMS對金奈米粒子的表面改質 13 2-1-2 二氧化矽的反應機制 14 2-2 二氧化矽的表面改質 16 2-3 生物偶合(Bioconjugation) 17 2-3-1 被動相吸 17 2-3-2 主動吸附 18 2-4 抗體專一特性 19 2-5表面增強拉曼散射 20 2-5-1 表面電漿共振 21 2-5-2 拉曼光譜學 21 2-6紅外吸收光譜法(Infrared Absorption Spectrometry) 23 2-7界達電位(Zeta potential) 25 2-8 布拉德福蛋白質定量法(Bradford assay) 26 2-9 檢測粒子對腫瘤細胞的專一性 26 2-10實驗儀器原理 27 2-10-1 穿透式電子顯微鏡(Transmission electron microscope,TEM) 27 2-10-1-1 樣品染色技術 29 2-10-2 紫外-可見光吸收光譜儀(UV-Vis Spectroscopy) 29 2-10-3 動態光散射儀(Dynamic light scattering,DLS) 30 2-10-4 傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectrometer,FTIR Spectrometer) 31 2-10-5 掃描式電子顯微鏡(Scanning electron microscope,SEM) 33 2-10-6 拉曼顯微鏡 35 2-11複合粒子包覆二氧化矽殼與連接抗體的實驗設置 37 2-11-1 複合粒子製程 40 2-11-2複合粒子包覆二氧化矽殼 40 2-11-3二次APTMS氨基修飾與接下來的羧基修飾 41 2-11-4 連接抗體製程 41 2-11-5 細胞培養 42 2-11-6 固定細胞檢測粒子專一性之SEM樣品置備 44 2-11-7 活細胞檢測粒子專一性之SEM樣品置備 44 2-11-8 量測拉曼光譜 45 2-11-9 TEM樣品置備 47 2-11-10 量測穿透光譜 48 2-11-11 量測zeta potential 48 2-11-12 量測FTIR光譜 49 2-11-13 Bradford assay 49 第三章 實驗結果 50 3-1 TEOS濃度對二氧化矽殼的關係 51 3-2 APTMS濃度對二氧化矽殼的關係 53 3-3 反應時間對二氧化矽殼生長的關係 54 3-4比較經APTMS、PEI、PAH修飾奈米粒子的zeta potential變化 55 3-5 比較不同氨基改質劑修飾Au@SiO2奈米粒子對羧基官能化的zeta potential變化 57 3-6 EDC/sulfo-NHS不同濃度的FTIR光譜比較 58 3-7 抗體連接奈米粒子各階段的FTIR光譜分析 60 3-8 TEM觀測抗體連接奈米粒子 61 3-9 抗體連接複合粒子各階段的zeta potential分析 63 3-10 抗體標定複合粒子各階段的FTIR光譜分析 63 3-11 TEM觀測抗體連接複合粒子 65 3-12 Bradfordassay分析抗體連接複合粒子數量 66 3-13 固定細胞檢驗複合粒子的專一性 68 3-14 活細胞檢驗細胞的專一性 70 3-15基板上複合粒子的拉曼量測 72 3-16 細胞上複合粒子的拉曼量測 77 3-17 細胞的拉曼光譜量測 80 3-18 持續照射雷射,檢測拉曼訊號穩定性 85 3-19結論 86 第四章 討論 89 4-1粒子損失率 89 4-2抗體連接對粒子之拉曼訊號的影響 92 4-3粒子在細胞上與基板上的拉曼訊號比較 93 4-4拉曼訊號優化 93 4-5未來方向 94 參考文獻 95

    [1] J. Lazarovits, Y. Y. Chen, E. A. Sykes, and W. C. Chan, "Nanoparticle–blood interactions: the implications on solid tumour targeting," Chemical Communications, vol. 51, no. 14, pp. 2756-2767, 2015.
    [2] J. Y. Yhee, S. Lee, and K. Kim, "Advances in targeting strategies for nanoparticles in cancer imaging and therapy," Nanoscale, vol. 6, no. 22, pp. 13383-13390, 2014.
    [3] Y. Wang, B. Yan, and L. Chen, "SERS tags: novel optical nanoprobes for bioanalysis," Chemical reviews, vol. 113, no. 3, pp. 1391-1428, 2012.
    [4] X. Huang and M. A. El-Sayed, "Plasmonic photo-thermal therapy (PPTT)," Alexandria Journal of Medicine, vol. 47, no. 1, pp. 1-9, 2011.
    [5] V. Biju, "Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy," Chemical Society Reviews, vol. 43, no. 3, pp. 744-764, 2014.
    [6] T. E. Taylor, F. B. Furnari, and W. K. Cavenee, "Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance," Current cancer drug targets, vol. 12, no. 3, pp. 197-209, 2012
    [7] M. F. Kircher,A. De La Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. M. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, S. S. Gambhir, "A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle," Nature medicine, vol. 18, no. 5, pp. 829-834, 2012.
    [8] FDA官方網站訊息,5-ALA被批准作為膠質細胞瘤手術的顯影劑https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm562645.htm
    [9] W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ALA-induced porphyrins: a prospective study in 52 consecutive patients," Journal of neurosurgery, vol. 93, no. 6, pp. 1003-1013, 2000.
    [10] D. Ni, Bu, J. Zhang, Bu. W, H. Xing, F. Han, Q. Xiao, Z. Yao, F. Chen, Q. He, J. Liu, S. Zhang, W. Fan, L. Zhou, W. Peng, and J. Shi, "Dual-targeting upconversion nanoprobes across the blood–brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma," ACS nano, vol. 8, no. 2, pp. 1231-1242, 2014.
    [11] C. L. Zavaleta,B. R. Smith, I. Walton, W. Doering, G. Davis, B. Sho jaei, M. J. Natan, S. S. Gambhir, "Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy," Proceedings of the National Academy of Sciences, vol. 106, no. 32, pp. 13511-13516, 2009.
    [12] J. R. Ferraro, Introductory raman spectroscopy. Academic press, 2003.
    [13] 林天心, "以穩定的奈米粒子叢集為基礎的拉曼標記", 碩士論文, 成功大學光電科學與工程學研究所, 2015
    [14] S. Y. Chen and A. A. Lazarides, "Quantitative amplification of Cy5 SERS in ‘Warm Spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure†," The Journal of Physical Chemistry C, vol. 113, no. 28, pp. 12167-12175, 2009.
    [15] B. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, "Silica–metal core–shell nanostructures," Advances in colloid and interface science, vol. 170, no. 1, pp. 28-47, 2012.
    [16] L. Wang,K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu,andW. Tan, "Watching silica nanoparticles glow in the biological world," Analytical Chemistry, vol. 78, no. 3, pp. 646-654, 2006.
    [17] K.C. Ho, P.J. Tsai, Y.S. Lin, and Y.C. Chen, "Using biofunctionalized nanoparticles to probe pathogenic bacteria," Analytical chemistry, vol. 76, no. 24, pp. 7162-7168, 2004.
    [18] D. L. Thorek and A. Tsourkas, "Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry," Molecular imaging, vol. 8, no. 4, pp. 211-229, 2009.
    [19] J. Wan, X. Meng, E. Liu, and K. Chen, "Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation," Nanotechnology, vol. 21, no. 23, p. 235104, 2010.
    [20] J. Yu, C.H. Hsu, C.C. Huang, and P.Y. Chang, "Development of Therapeutic Au–Methylene Blue Nanoparticles for Targeted Photodynamic Therapy of Cervical Cancer Cells," ACS applied materials & interfaces, vol. 7, no. 1, pp. 432-441, 2014.
    [21] T. Zapf, C. Zafiu, C. Zaba, C.-W. D. Tan, W. Hunziker, and E.-K. Sinner, "Nanoscopic leg irons: harvesting of polymer-stabilized membrane proteins with antibody-functionalized silica nanoparticles," Biomaterials science, vol. 3, no. 9, pp. 1279-1283, 2015.
    [22] W. Deng, D. Jin, K. Drozdowicz‐Tomsia, J. Yuan, J. Wu, and E. M. Goldys, "Ultrabright Eu–Doped Plasmonic Ag@ SiO2 Nanostructures: Time‐gated Bioprobes with Single Particle Sensitivity and Negligible Background," Advanced materials, vol. 23, no. 40, pp. 4649-4654, 2011.
    [23] Z. Wang, J. Han, H. Gao, C. Li, and Z. Fu, "Protein functionalized titania particle as a nanocarrier in a multiple signal antibody amplification strategy for ultrasensitive chemiluminescent immunoassay," Talanta, vol. 88, pp. 765-768, 2012.
    [24] Z. Wang, S. Zong, H. Chen, H. Wu, and Y. Cui, "Silica coated gold nanoaggregates prepared by reverse microemulsion method: Dual mode probes for multiplex immunoassay using SERS and fluorescence," Talanta, vol. 86, pp. 170-177, 2011.
    [25] C. Moore, H. Monton, R. O'Kennedy, D. E. Williams, C. Nogues, C. Crean, and V. Gubala, "Controlling colloidal stability of silica nanoparticles during bioconjugation reactions with proteins and improving their longer-term stability, handling and storage," Journal of Materials Chemistry B, vol. 3, no. 10, pp. 2043-2055, 2015.
    [26] W. Stöber, A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," Journal of colloid and interface science, vol. 26, no. 1, pp. 62-69, 1968.
    [27] S. K. Vashist, B. Zhang, D. Zheng, K. Al-Rubeaan, J. H. Luong, and F.-S. Sheu, "Sulfo-N-hydroxysuccinimide interferes with bicinchoninic acid protein assay," Analytical biochemistry, vol. 417, no. 1, pp. 156-158, 2011.
    [28] R. Huang,S. Harmsen, J. M. Samii, H. Karabeber, K. L. Pitter, E. C. Holland, andM. F. Kircher, "High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe," Theranostics, vol. 6, no. 8, p. 1075, 2016.
    [29] M. Jermyn, K. Mok, J. Mercier, J. Desroches, J. Pichette, K. Saint-Arnaud, L. Bernstein, M.-C. Guiot, K. Petrecca , and F. Leblond, "Intraoperative brain cancer detection with Raman spectroscopy in humans," Science translational medicine, vol. 7, no. 274, pp. 274ra19-274ra19, 2015.
    [30] A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, "Dimeric Gold Nanoparticle Assemblies as Tags for SERS‐Based Cancer Detection," Advanced healthcare materials, vol. 2, no. 10, pp. 1370-1376, 2013.
    [31] L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, "Synthesis of nanosized gold− silica core− shell particles," Langmuir, vol. 12, no. 18, pp. 4329-4335, 1996.
    [32] 吳政樑, "二氧化矽/甲基丙烯酸甲酯核殼型複合乳膠粒子之合成與性質", 碩士論文成功大學化學工程學研究所, 2009
    [33] C. J. Brinker and G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, 2013.
    [34] R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry,Canada: John Wiley &Sons Inc, 1979.
    [35] G. T. Hermanson, Bioconjugate techniques. Academic press, 2013.
    [36] Z. Grabarek and J. Gergely, "Zero-length crosslinking procedure with the use of active esters," Analytical biochemistry, vol. 185, no. 1, pp. 131-135, 1990.
    [37] B. Alberts, Essential Cell Biology. Garland Science, 2010.
    [38] C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, Immunobiology: the immune system in health and disease. Current Biology, 1997.
    [39] 徐榮忠, "具奈米結構之電漿子生物感測器", 碩士論文,成功大學工程科學研究所, 2008
    [40] 曾賢德(2010), 金奈米粒子的表面電漿共振特性: 耦合, 應用與樣品製作物理雙月刊,32,2, 126-135
    [41] 江宇涵, "奈米粒子應用於癌細胞標定的拉曼光學量測", 碩士論文, 應用化學系分子科學研究所, 2010
    [42] 孫逸民, 陳玉舜, 趙敏勳, 謝明學, 劉興鑑, 儀器分析, 全威圖書有限公司,1997
    [43] R. J. Hunter, Zeta potential in colloid science: principles and applications. Academic press, 2013.
    [44] V. Mohanraj and Y. Chen, "Nanoparticles-a review," Tropical Journal of Pharmaceutical Research, vol. 5, no. 1, pp. 561-573, 2006.
    [45] J. M. Walker, The protein protocols handbook. Springer Science & Business Media, 1996.
    [46] C. D. Georgiou, K. Grintzalis, G. Zervoudakis, and I. Papapostolou, "Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins," Analytical and bioanalytical chemistry, vol. 391, no. 1, pp. 391-403, 2008.
    [47] 付洪蘭, 實用電子顯微鏡技術, 合記圖書發行, 2007
    [48] D. C. Bell and N. Erdman, Low voltage electron microscopy: principles and applications. John Wiley & Sons, 2012.
    [49] K. K. Chittur, "FTIR/ATR for protein adsorption to biomaterial surfaces," Biomaterials, vol. 19, no. 4, pp. 357-369, 1998.
    [50] R. Chao, R. Khanna, and E. Lippincott, "Theoretical and experimental resonance Raman intensities for the manganate ion," Journal of Raman Spectroscopy, vol. 3, no. 2‐3, pp. 121-131, 1975.
    [51] Y. Kobayashi,H. Inose, T. Nakagawa, K. Gonda, M. Takeda, N. Ohuchi, and A. Kasuya, "Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties," Journal of colloid and interface science, vol. 358, no. 2, pp. 329-333, 2011.
    [52] C. Wang, Y. Chen, T. Wang, Z. Ma, and Z. Su, "Monodispersed Gold Nanorod‐Embedded Silica Particles as Novel Raman Labels for Biosensing," Advanced Functional Materials, vol. 18, no. 2, pp. 355-361, 2008.
    [53] Z. Bai, R. Chen, P. Si, Y. Huang, H. Sun, and D.-H. Kim, "Fluorescent pH sensor based on Ag@ SiO2 core–shell nanoparticle," ACS Applied Materials & Interfaces, vol. 5, no. 12, pp. 5856-5860, 2013.
    [54] Y. Kobayashi,R. Nagasu, K. Shibuya, T. Nakagawa, Y. Kubota, K. Gonda, and N. Ohuchi, "Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications," Journal of Nanoparticle Research, vol. 16, no. 8, pp. 1-13, 2014.
    [55] N. Sui,V. Monnier, Y. Zakharko, Y. Chevolot, S. Alekseev, J. M. Bluet, V. Lysenko, and E. Souteyrand,., "Plasmon-controlled narrower and blue-shifted fluorescence emission in (Au@ SiO 2) SiC nanohybrids," Journal of Nanoparticle Research, vol. 14, no. 8, pp. 1-10, 2012.
    [56] Y. An, M. Chen, Q. Xue, and W. Liu, "Preparation and self-assembly of carboxylic acid-functionalized silica," Journal of Colloid and Interface Science, vol. 311, no. 2, pp. 507-513, 2007.
    [57] N. M. Bahadur, T. Furusawa, M. Sato, F. Kurayama, I. A. Siddiquey, and N. Suzuki, "Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation," Journal of colloid and interface science, vol. 355, no. 2, pp. 312-320, 2011.
    [58] W. Ding,J. Cai, Z. Yu, Q. Wang, Z. Xu, Z. Wang, ,and C. Gao, "Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support," Journal of Materials Chemistry A, vol. 3, no. 40, pp. 20118-20126, 2015.
    [59] B. Xu,Y. Ju, Y. Cui, G. Song, Y. Iwase, A. Hosoi, and Y. Morita, "tLyP-1–Conjugated Au-Nanorod@ SiO2 Core–Shell Nanoparticles for Tumor-Targeted Drug Delivery and Photothermal Therapy," Langmuir, vol. 30, no. 26, pp. 7789-7797, 2014.
    [60] S. Zhan,Y. Yang, Z. Shen, J. Shan, Y. Li, S. Yang, , and D. Zhu, "Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles," Journal of hazardous materials, vol. 274, pp. 115-123, 2014.
    [61] Q. Chang and H. Tang, "Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2, 4-dichlorophenol," Molecules, vol. 19, no. 10, pp. 15768-15782, 2014.
    [62] E. F. d. Reis,F. S. Campos, A. P. Lage, R. C. Leite, L. G. Heneine, W. L. Vasconcelos, Z. I. P. Lobato , and H. S. Mansur "Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption," Materials Research, vol. 9, no. 2, pp. 185-191, 2006.
    [63] V. Zucolotto,M. Ferreira, M. R. Cordeiro, C. J. Constantino, D. T. Balogh, A. R. Zanatta,W. C. Moreira, and O. N. Oliveira,., "Unusual interactions binding iron tetrasulfonated phthalocyanine and poly (allylamine hydrochloride) in layer-by-layer films," The Journal of Physical Chemistry B, vol. 107, no. 16, pp. 3733-3737, 2003.
    [64] M. Kahraman, A. I. Zamaleeva, R. F. Fakhrullin, and M. Culha, "Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering," Analytical and bioanalytical chemistry, vol. 395, no. 8, pp. 2559-2567, 2009.
    [65] C. Munro, W. Smith, M. Garner, J. Clarkson, and P. White, "Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering," Langmuir, vol. 11, no. 10, pp. 3712-3720, 1995.
    [66] M. Mabuchi, T. Takenaka, Y. Fujiyoshi, and N. Uyeda, "Surface enhanced Raman scattering of citrate ions adsorbed on gold sol particles," Surface Science, vol. 119, no. 2-3, pp. 150-158, 1982.
    [67] J. S. W. Mak, "Raman Characterization of Colloidal Nanoparticles using Hollow-Core Photonic Crystal Fibers," University of Toronto, 2011.
    [68] Y. Zhang, F. Wang, H. Yin, and M. Hong, "Nonuniform Distribution of Capping Ligands Promoting Aggregation of Silver Nanoparticles for Use as a Substrate for SERS," 2013.
    [69] 陳俊谷, "微流道流體混合之可視化實驗與分析", 碩士論文, 中興大學機械工程研究所, 2003
    [70] J.-W. Park and J. S. Shumaker-Parry, "Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles," Journal of the American Chemical Society, vol. 136, no. 5, pp. 1907-1921, 2014.
    [71] M. Schuetz, C. I. Müller, M. Salehi, C. Lambert, and S. Schlücker, "Design and synthesis of Raman reporter molecules for tissue imaging by immuno‐SERS microscopy," Journal of biophotonics, vol. 4, no. 6, pp. 453-463, 2011.
    [72] Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, "Combined labelled and label-free sers probes for triplex three-dimensional cellular imaging," Scientific reports, vol. 6, p. 19173, 2016.
    [73] X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nature biotechnology, vol. 26, no. 1, p. 83, 2008.
    [74] 陳郁淇, "惡性神經膠母細胞瘤所導致之腦水腫產生的影響", 碩士論文,成功大學細胞生物與解剖學研究所, 2012

    下載圖示 校內:2022-09-10公開
    校外:2022-09-10公開
    QR CODE