| 研究生: |
盧昌甫 Lu, Chun-fu |
|---|---|
| 論文名稱: |
Cu6Sn5金屬間化合物對Sn-xCu共晶無鉛銲錫合金之高溫拉伸變形阻抗效應探討 Effects of Cu6Sn5 on the High Temperature Tensile Behavior of Sn-xCu Lead-Free Solder Alloys |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 高溫拉伸 、無鉛銲錫 、錫銅 |
| 外文關鍵詞: | Sn-Cu |
| 相關次數: | 點閱:84 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銲錫材料使用時可能受外力影響產生破壞且在製程與應用上常常在高溫的環境之下,本實驗主要研究銲錫材料之拉伸機械性質,探討介金屬化合物Cu6Sn5含量對Sn-xCu (x=0.3, 0.6, 1.3, 1.7, 2, 4, 6, 9)合金在常溫及高溫 (120℃及180℃)環境下以等應變速率 (7.5x10-4 s-1)做拉伸測試,以及在常溫下對Sn-xCu (x=0.3, 1.7, 4)做改變拉伸應變速率 (7.5x10-4 s-1、4.2x10-3 s-1、3.3x10-2 s-1)拉伸測試之拉伸機械性質的影響。Sn-xCu系合金的微觀組織為樹枝狀初晶β-Sn與散佈的介金屬化合物Cu6Sn5。隨Cu含量的增加,介金屬化合物Cu6Sn5含量提升且粗大,而初晶β-Sn量減少且有細化的趨勢;從DSC熱差分析結果顯示,Sn-xCu (x=0.3~9)合金組織內皆有熔點較低的共晶組成存在。
在常溫環境下做等應變速率 (7.5x10-4 s-1)之拉伸測試,隨著Cu含量增加,常溫下硬度較高的介金屬化合物Cu6Sn5含量也隨之增加且初晶β-Sn細化,造成材料的抗拉強度隨著Cu含量增加而提升;在高溫 (120℃及180℃)環境下做等應變速率 (7.5x10-4 s-1)之拉伸測試,可能因整體組織在高溫下軟化,造成整體抗拉強度降低,整體的伸長率提升,組織中熔點較低的共晶組成及初晶β-Sn軟化程度大於熔點較高的介金屬化合物Cu6Sn5,使得Cu6Sn5在高溫下對抗拉強度的貢獻不顯著。
常溫下對Sn-0.3Cu、Sn-1.7Cu及Sn-4Cu做改變拉伸應變速率 (7.5x10-4 s-1、4.2x10-3 s-1、3.3x10-2 s-1)之拉伸測試結果,發現應變速率越高對Sn-xCu合金之抗拉強度有提升作用,並發現Sn-4Cu在高應變速率下拉伸,有較高的降伏強度及流變應力,且從拉伸迫斷面及次表面的觀察,其斷裂面接近脆性斷裂,因此可能為其內部硬脆之介金屬化合物Cu6Sn5產生的效應。
The solder may be damaged in high temperature during the process and application. The most important of this study is in order to investigate the effect of Cu6Sn5 at different temperature and different strain rate on mechanical properties of Sn-xCu lead-free solders. The tensile test behavior of Sn-xCu lead-free solder alloys were be discussed in this study. The tensile tests of Sn-xCu (x=0.3, 0.6, 1.3, 1.7, 2, 4, 6, 9) lead-free solders would be done at different temperature (RT、120℃ and 180℃) with constant strain rate (7.5x10-4 s-1). And then, Sn-xCu (x=0.3, 1.7, 4) lead-free solders were be tested by changing strain rate (7.5x10-4 s-1、4.2x10-3 s-1、3.3x10-2 s-1) at room temperature; the relevant tensile properties were obtained.
The microstructure of the Sn-xCu alloys was composed of the primary dendritic phase (β-Sn) and the discretely distributed second phase Cu6Sn5. By the increasing of Cu content, the numbers of IMC (Cu6Sn5) were more and the primary phase β-Sn was finer.
The results of room temperature tensile of Sn-xCu lead-free solders at constant strain rate shown that the tensile strength of the Sn-xCu lead-free solders increased with the increasing of Cu6Sn5. Because of the softening of the overall microstructure of Sn-xCu alloys at high temperature (120℃ and 180℃), the tensile strength of the Sn-xCu lead-free solders decreased with the increasing of test temperature with constant strain rate. IMC (Cu6Sn5) for the tensile properties of Sn-xCu alloys at high temperature was less than at room temperature might be caused by the softening of the base phase of Sn-xCu alloys at high temperature.
The different strain rates (7.5x10-4 s-1、4.2x10-3 s-1、3.3x10-2 s-1) tensile test have obviously effect on tensile properties of Sn-xCu lead-free solders. It was found that Sn-4Cu have higher tensile strength at high strain rates than at low strain rates. The rupture type of Sn-4Cu at high strain rates tensile test could be a little brittle fractures. It might the effect of the Cu6Sn5.
1. S. S. Kang, and A. K. Sarkhel, “Lead Free Solders for Electronic Packaging”, Journal of Electronic Materials, 1994, Vol. 23, pp. 701-707.
2. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys For Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, 1994, Vol. 23, pp.693-700.
3. M. McCormack, and S. Jin, “New, Lead-Free Solders”, Journal of Electronic Materials, 1994, Vol. 23, pp. 635-640.
4. E. P. Wood, and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, Journal of Electronic Materials, 1994, Vol. 23, pp. 709-713.
5. S. H. Huh, K. S. Kim, and K. Suganuma, “Effect of Ag Addition on the Microstructure and Mechanical Properties of Sn-Cu Eutectic Solder”, Materials Transactions, 2001, Vol. 42, pp. 739-744.
6. M. T. Jann, and A. R. Saavedra, “Fatigue and Tensile Properties of a Newly Developed Tin-Copper Alloy”, J. Mater, Sci. Letters (UK). Vol. 11, no. 23, pp. 1596-1598. 1 Dec. 1992.
7. S. M. McGuire, M. E. Fine, O. Buck, and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res. , Vol. 8, pp. 2216-2223, 1993.
8. Boyer and T. L. Gall, Metal Handbook, ASM, Desk Edition, Chap. 30, pp. 1269-1271, 1999.
9. M. M. Schwartz, “Fundamentals of Soldering”, ASM Handbook, 1993, Vol. 6, pp. 126-137.
10. S. M. Darwish, S. A. Habdan, and A. A. Tamimi, “A Knowledge-base for Electronics Soldering”, Journal of Materials Processing Technology, 2000, Vol. 97, Issue: 1-3, pp. 1-9.
11. W. J. Plumbridge, “Review Solders in Electronic”, Journal of Materials Science, 1996, Vol. 31, pp. 2501-2514.
12. P. T. Vianco and D. R. Frear, “Issues in the replacement of lead bearing solders”, JOM, 45 (7), pp. 14-19, July 1993.
13. M. McCormack, and S. Jin, and G. W. Kammlott, “Suppression of Microstructural Coarsening and Creep Deformation in a Lead-Free Solder”, American Institute of Physics, 1994, Vol. 64, pp. 580-582.
14. Microelectronics Packaging Handbook Part 3, R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Chapman & Hall, 2nd Edition, 1997, Chap. 15-16.
15. 莊強名,「無鉛化共晶合銲錫合金之振動破壞特性研究」,國立成功大學材料科學及工程學系,博士論文,民國90年。
16. 張淑如,「鉛對身體的危害」,勞工安全衛生簡訊,民國84年,第12期,17-18頁。
17. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, 1994, Vol. 23, pp. 693-700.
18. N. Saunders and A. P. Miodownik, “Ag-Sn Binary Alloy Diagrams”, ASM Handbook, Vol. 3, pp. 2, 179, 1992.
19. M. T. Jann and A. R. Saavedra: J. Materials Science Letters (UK) vol.11, 23 (1992) 1596-1598.
20. C. M. L. Wu, D. Q. Yu, and L. Wang, “Microstructure and Mechanical Properties of New Lead-Free Sn-Cu-Re Solder Alloys”, Journal of Electronic Materials, 2002, Vol. 31, pp. 928-932.
21. L. Xiao, J. Liu, L. Ye, and A. Tholen, “Characterization of Mechanical Properties of Bulk Lead Free Solders”, International Symposium on Advanced Packaging Materials, 2000, pp. 145-151.
22. K. S. Bae and S. J. Kim, “Microstructure and Adhesion Properties of Sn-0.7Cu/Cu Solder Joints”, J. Mater. Res. Vol. 17, No. 4, pp. 734-746, 2002.
23. K. Suganuma, “Advance in Lead-Free Electrons Soldering”, Curr. Opin. Solid State Mater. Sci. Vol. 5, pp. 55-64, 2001.
24. Z. Fulong, Z. Honghai, G. Rongfeng, L. Sheng, “Investigation of microstructures and tensile properties of a Sn-Cu lead-free solder alloy”, Journal of Materials Science: Materials in Electronics. Vol. 17, no. 5, pp. 379-384. May 2006.
25. 蔡東原,「共晶型錫基合金之高荷電破壞特性探討」,國立成功大學材料科學及工程學系,碩士論文,民國93年。
26. H. Ye, C. Basaran, and D. C. Hopkin, “Damage Mechanics of Microelectronics Solder Joints under High Current Densities”, International Journal of Solids and Structures, 2003, Vol. 40, pp. 4021-4032.
27. H. Ye, C. Basaran, and D. C. Hopkin, “Mechanical Degradation of Microelectronics Solder Joints under Current Stressing”, International Journal of Solids and Structures, 2003, Vol. 40, pp. 7269-7284.
28. H. Ye, C. Basaran, and D. C. Hopkin, “Pb Phase Coarsening in Eutectic Pb/Sn Flip Chip Solder Joints under Electric Current Stressing”, International Journal of Solids and Structures, 2004, Vol. 41, pp. 2743-2755.
29. Robert E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles”, Third Edition.
30. G. Rai and N. J. Grant, “On the Measurement of Superplasticity in an Al-Cu Alloy”, Metall. Trans. , 6A (1975), pp. 385-390.
31. A.H. Chokshi and T.G. Langdon, “The Mechanical Properties of the Superplastic Al-33 Pct Cu Eutectic Alloy”, Metall. Trans. , 19A (1988), pp. 2487-2496.