簡易檢索 / 詳目顯示

研究生: 許之博
Hsu, Chih-Po
論文名稱: 氣候變遷下剩餘洪水風險於土地使用管理策略之探討—以新北市五股區為例
Investigating Land-Use Management Strategies to Mitigate Residual Flood Risk under Climate Change: A Case Study of Wugu District, New Taipei City, Taiwan
指導教授: 張學聖
Chang, Hsueh-Sheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 132
中文關鍵詞: 剩餘洪水風險土地使用管理策略堤防效應CA-MarkovSOBEK
外文關鍵詞: Residual Flood Risk, Land-Use Management Strategies, Levee Effect, CA-Markov, SOBEK
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都市洪水已成為 21 世紀全球面臨重大挑戰之一,由於快速都市化與氣候變遷導致洪水風險急遽升高。傳統洪水風險管理主要依賴防洪堤防與排水系統等結構性工程措施,降低災害發生頻率與減輕災損。然而,都市化進程導致不透水層面積大幅增加,進而加劇逕流量;此外,氣候變遷亦導致極端降雨事件頻率與強度上升,導致降雨強度經常超出現有設計標準,皆已凸顯出傳統防洪措施在面對氣候變遷挑戰時侷限性。
    再者,「堤防效應(Levee Effect)」相關研究指出,堤防等結構性防洪設施促使居民與政府產生虛假安全感,使得土地開發管制與使用規範遭到忽視,導致易淹水地區快速開發,增加整體暴露風險;若一旦極端降雨事件超出保護標準,便可能引發更加嚴重之社會經濟損失。因此,近年來洪水風險管理領域逐漸重視「剩餘洪水風險」(Residual Flood Risk),即在已有防護措施下仍存在之風險。然儘管既有相關研究已探討設法減輕超越保護標準剩餘風險,卻多忽視結構性防洪措施後,伴隨激增土地開發壓力下所產生土地開發與洪水風險管理間矛盾。
    綜上所述,本研究從堤坊效應觀點出發,以空間規劃角度探討土地使用管理策略對剩餘洪水風險之影響,並選定新北市五股區作為研究範圍,該區堤防高度自原6公尺提升至10公尺。首先,透過CA-Markov模擬2035年土地利用變遷,並結合SOBEK一二維淹水模式,模擬在氣候變遷RCP8.5情境下實施新增防洪排水工程前後淹水潛勢範圍變化,分析未來洪水暴露面積與經濟損失。並進一步模擬多種土地管理策略情境,包括低衝擊開發、洪水風險區開發限制與綠地保留措施,探討其對降低剩餘洪水風險之差異。最後,綜合各情境下所減少風險損失,納入防洪設施設置成本與土地使用限制產生機會成本,進行整體成效評估比較。
    成果顯示,五股區於堤防加高與抽水設施後,儘管淹水範圍與深度減少,然隨快速都市發展下,整體長期洪水暴露面積與風險損失仍顯著增加,反映出堤防效應下土地使用管理重要性。此外,低衝擊開發措施雖減洪效果有限,但在不影響既有土地開發利益下仍具相對高成效;而採取風險區開發限制,能避免人口與財產暴露,為達成長期洪水風險管理關鍵條件,惟需考量伴隨極高土地開發限制機會成本,故建議未來可依照洪水頻率分析搭配適當土地使用管理策略。整體而言,本研究證實易淹水地區落實適當土地管制,俾能有效管理餘洪水風險,以因應氣候變遷與快速土地開挑戰,達到兼顧都市永續與安全發展願景。

    This study examined residual flood risk in Wugu District, New Taipei City, by assessing the combined effects of enhanced structural flood control standards and projected land-use and land-cover changes through 2035. LULC transitions were modeled using the CA–Markov model, while flood inundation simulations were conducted with the SOBEK 1D/2D hydrodynamic model. Results indicated that although engineered measures, such as levee heightening and pumping stations, reduced short-term risk, they contributed to long-term increases in flood exposure and damage, particularly in commercial zones.
    Six land-use management scenarios were evaluated. Among them, Scenario 6 (Integrated Strategy II) and Scenario 3 (Flood Risk Control) most effectively reduced flood damage under both 100- and 200-year return periods, with projected losses falling below the 2015 baseline. Scenario 2 (Low-Impact Development), while achieving the lowest absolute reduction in damage, demonstrated the highest cost-efficiency under the 100-year return period, as it avoided opportunity costs associated with development restrictions. However, its effectiveness extremely declined under more extreme rainfall conditions.
    These findings highlighted the trade-off between flood mitigation and urban growth. While restrictive spatial planning proved effective in risk reduction, it incurred substantial opportunity costs. The study concluded that balanced land-use strategies are essential for achieving long-term flood resilience in rapidly urbanizing areas under climate change.

    第一章、 緒論1 第一節、研究背景與動機1 第二節、研究目的2 第三節、研究內容與流程3 第二章、 文獻回顧5 第一節、堤防效應與剩餘洪水風險5 第二節、土地利用變遷相關工具與研究13 第三節、淹水模擬相關工具與研究16 第三章、 研究方法與設計20 第一節、研究架構20 第二節、研究範圍21 第三節、CA-Markov土地利用變遷模擬23 第四節、SOBEK淹水模式建置30 第五節、新增防洪排水工程與土地管理策略情境設定43 第六節、土地管理策略成效分析55 第四章、實證成果與分析61 第一節、土地利用變遷模擬61 第二節、降雨情境淹水模擬66 第三節、新增防洪排水工程與土地管理策略下洪水風險分析74 第四節、各土地管理策略情境之成效分析98 第五章、 結論與建議104 第一節、研究結論104 第二節、後續研究建議105 參考文獻107

    一、中文文獻
    內政部國土測繪中心(2024)。水利數值地形資料。內政部國土測繪中心網站,網址:https://www.nlsc.gov.tw/cp.aspx?n=13855。
    內政部營建署(2015)。「水環境低衝擊開發設施操作手冊」。
    王筱雯、郭純園(2024年7月29日)。25座滯洪池承蓄近500萬噸洪水,為什麼凱米來襲高雄還是淹水?|流域共好。CSR@天下。網址:https://csr.cw.com.tw/article/43747。
    吳湘琪(2024)。氣候變遷下都市防洪策略與通洪能力評估—以二重疏洪道為例。﹝碩士論文。淡江大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4yvxw4。
    宋容豪(2024)。一二維耦合方式SOBEK淹水模式建置以南投為例。﹝碩士論文。國立臺北科技大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/63w55w。
    巫孟璇(2013)。地文性淹水即時預報模式之發展與應用。﹝博士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/2g2t5a。
    林又青、簡頌愔、李宗融、何瑞益(2021)。2021年西歐洪水災害紀錄。國家災害防救科技中心災害防救電子報。https://den1.ncdr.nat.gov.tw/1132/1188/1205/64742/68292/#present
    邱薏潔(2024)。氣候變遷與都市發展對洪災危害度之空間區位影響探討―以臺北市為例。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/zewep3。
    徐敏純(2018)。堤防效應下之水災風險變遷與風險認知研究。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/4eneyc。
    國家災害防救中心(2016)。氣候變遷下災害風險圖問答集。
    國家災害防救中心(2022)。災害潛勢圖資說明手冊。
    張力慈(2024)。淨零路徑下的造林增匯策略與權衡評估-以臺南市為例。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4y283r。
    張向寬、林永峻、賴進松、譚義績(2016)。跨集水區淹水模擬之影響與探討。農業工程學報,62(3),74-88。https://doi.org/10.29974/JTAE.201609_62(3).0007
    張學聖、徐敏純(2021)。堤防效應下之水災風險變遷與風險認知研究。都市與計劃,48(2),107-132。https://doi.org/10.6128/CP.202106_48(2).0001
    第九屆行政院災害防救專家諮詢委員會「極端災害之韌性城市」(2020)
    內政部營建署(2015)水環境低衝擊開發設施操作手冊
    經濟部(2017)「台灣地區雨量測站降雨強度-延時Horner公式參數分析」
    羅偉誠、吳杰穎、巫孟璇(2023)。國土計畫城鄉發展地區之減洪調適規劃與水理分析技術研究。內政部建築研究所委託研究報告
    許晃雄、王嘉琪、陳正達、李明旭、詹士樑 (2024)。國家氣候變遷科學報告2024:現象、衝擊與調適 [許晃雄、李明旭 主編]。國家科學及技術委員會與環境部聯合出版。
    許銘熙(2005)。淹水災害防護規模設定之研究。
    郭政樺(2022)。以數值模擬結合類神經網路探討低衝擊開發設施之影響。﹝碩士論文。淡江大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/xjnfpt。
    黃星豪(2024)。以SOBEK評估氣候變遷下有才村在地滯洪之NbS效益。﹝碩士論文。逢甲大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/56ke4d。
    楊松勳、劉子明、林士堯(民111年3月11日)。 未來設計暴雨改變率資料生產履歷(1.0版)。[2025/6/17], 取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220119171523.pdf
    經濟部水利署(2006)。河川治理及環境營造規劃參考手冊。
    經濟部水利署(2020)。流域整體改善與調適規劃參考手冊。
    經濟部水利署(2020)。逕流分擔技術手冊。
    經濟部水利署(2023)。「淹水潛勢圖製作手冊(112年版)」。
    經濟部水利署水利規劃試驗所(2014)。都會區洪水災害損失調查分析總報告書。
    經濟部水利署水利規劃試驗所(2018)。淡水河流域國土計畫特定區域計畫推動(1/2)。
    經濟部水利署水利規劃試驗所(2020)。出流管制技術手冊。
    經濟部水利署水利規劃試驗所(2022)。水利數值地形資料產製與應用。水利電子報第0517期。
    經濟部水利署水利規劃試驗所(2023)。淡水河流域整體改善與調適規劃(初稿)」。
    經濟部水利署第十河川局(2018)。淡水河流域水系風險評估及水利建造物安全性檢測計畫。
    經濟部水利署第十河川局(2021)。淡水河水系逕流分擔評估規劃(2/2)。
    臺北市政府工務局養護工程處(2003)。積水損失調查分析研究成果報告書。
    蕭靖(2021)。局部加密之數值地形對洪水基準高程及淹水面積之差異性探討。﹝碩士論文。逢甲大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/86r527。
    謝東洲、蕭逸華、陳麒文、李欣輯、趙益群、葉克家(2019)。氣候變遷下淡水河主河道防洪及沖淤探討。中國土木水利工程學刊,31(4),327-336。https://doi.org/10.6652/JoCICHE.201906_31(4).0004
    鍾婷羽(2017)。設置低衝擊開發設施對都市淹水影響之研究。﹝碩士論文。國立交通大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/ku27f3。
    羅偉誠、吳杰穎、蔡長泰(2022)。從流域觀點探討氣候行動於城鄉發展區都市計畫減洪調適規劃之研究。內政部建築研究所研究報告。
    顧嘉安(2010)。以馬可夫鍊細胞自動機模型模擬極端洪水對都市土地利用型態之影響─以台北市為例。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/2458kd。
    二、英文文獻
    Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2016). The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation, 52, 380–389. https://doi.org/10.1016/j.jag.2016.07.007
    Adamatzky, A. I. (2018). Identification Of Cellular Automata. CRC Press. https://doi.org/10.1201/9781315274355
    Adnan, M. S. G., Abdullah, A. Y. M., Dewan, A., & Hall, J. W. (2020). The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy, 99, 104868. https://doi.org/10.1016/j.landusepol.2020.104868
    Aerts, J. C. J. H. (2020). Integrating agent-based approaches with flood risk models: A review and perspective. Water Security, 11, 100076. https://doi.org/10.1016/j.wasec.2020.100076
    Askarizadeh, A., Rippy, M. A., Fletcher, T. D., Feldman, D. L., Peng, J., Bowler, P., Mehring, A. S., Winfrey, B. K., Vrugt, J. A., AghaKouchak, A., Jiang, S. C., Sanders, B. F., Levin, L. A., Taylor, S., & Grant, S. B. (2015). From Rain Tanks to Catchments: Use of Low-Impact Development To Address Hydrologic Symptoms of the Urban Stream Syndrome. Environmental Science & Technology, 49(19), 11264–11280. https://doi.org/10.1021/acs.est.5b01635
    Avellaneda, P. M., Jefferson, A. J., Grieser, J. M., & Bush, S. A. (2017). Simulation of the cumulative hydrological response to green infrastructure. Water Resources Research, 53(4), 3087–3101. https://doi.org/10.1002/2016WR019836
    Bianchini, S., Solari, L., Del Soldato, M., Raspini, F., Montalti, R., Ciampalini, A., & Casagli, N. (2019). Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sensing, 11(17), Article 17. https://doi.org/10.3390/rs11172015
    Castellarin, A., Domeneghetti, A., & Brath, A. (2011). Identifying robust large-scale flood risk mitigation strategies: A quasi-2D hydraulic model as a tool for the Po river. Physics and Chemistry of the Earth, Parts A/B/C, 36(7), 299–308. https://doi.org/10.1016/j.pce.2011.02.008
    Chakraborty, A., Sikder, S., Omrani, H., & Teller, J. (2022). Cellular Automata in Modeling and Predicting Urban Densification: Revisiting the Literature since 1971. Land, 11(7), Article 7. https://doi.org/10.3390/land11071113
    D’Angelo, C., Fiori, A., & Volpi, E. (2020). Structural, dynamic and anthropic conditions that trigger the emergence of the levee effect: Insight from a simplified risk-based framework. Hydrological Sciences Journal, 65(6), 914–927. https://doi.org/10.1080/02626667.2020.1729985
    Davenport, F., Burke, M., & Diffenbaugh, N. S. (2021). Contribution of historical precipitation change to US flood damage. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 118(4), e2017524118. https://doi.org/10.1073/pnas.2017524118
    Deeming, H., Whittle, R., & Medd, W. (2012). Investigating resilience, through ‘before and after’ perspectives on residual risk (S. Bennett, Ed.; pp. 173–200). Gower. https://nrl.northumbria.ac.uk/id/eprint/12163/
    Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29(3), 390–401. https://doi.org/10.1016/j.apgeog.2008.12.005
    Di Baldassarre, G., Kreibich, H., Vorogushyn, S., Aerts, J., Arnbjerg-Nielsen, K., Barendrecht, M., Bates, P., Borga, M., Botzen, W., Bubeck, P., De Marchi, B., Llasat, C., Mazzoleni, M., Molinari, D., Mondino, E., Mård, J., Petrucci, O., Scolobig, A., Viglione, A., & Ward, P. J. (2018). Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrology and Earth System Sciences, 22(11), 5629–5637. https://doi.org/10.5194/hess-22-5629-2018
    Ding, M., Lin, P., Gao, S., Wang, J., Zeng, Z., Zheng, K., Zhou, X., Yamazaki, D., Gao, Y., & Liu, Y. (2023). Reversal of the levee effect towards sustainable floodplain management. Nature Sustainability, 6(12), 1578–1586. https://doi.org/10.1038/s41893-023-01202-9
    Domeneghetti, A., Carisi, F., Castellarin, A., & Brath, A. (2015). Evolution of flood risk over large areas: Quantitative assessment for the Po river. Journal of Hydrology, 527, 809–823. https://doi.org/10.1016/j.jhydrol.2015.05.043
    Dottori, F., Mentaschi, L., Bianchi, A., Alfieri, L., & Feyen, L. (2023). Cost-effective adaptation strategies to rising river flood risk in Europe. Nature Climate Change, 13(2), Article 2. https://doi.org/10.1038/s41558-022-01540-0
    European Commission, Directorate-General for Research and Innovation, & Vojinovic, Z. (2020). Nature-based solutions for flood mitigation and coastal resilience – Analysis of EU-funded projects. Publications Office of the European Union. https://doi.org/10.2777/374113
    Ferdous, M. R., Wesselink, A., Brandimarte, L., Di Baldassarre, G., & Rahman, M. M. (2019). The levee effect along the Jamuna River in Bangladesh. Water International, 44(5), 496–519. https://doi.org/10.1080/02508060.2019.1619048
    Fu, X., Bell, R., Reu Junqueira, J., White, I., & Serrao-Neumann, S. (2023). Managing rising residual flood risk: A national survey of Aotearoa-New Zealand. Journal of Flood Risk Management, 16(4), e12944. https://doi.org/10.1111/jfr3.12944
    Gwet, K. L. (2014). Handbook of Inter-Rater Reliability, 4th Edition: The Definitive Guide to Measuring The Extent of Agreement Among Raters. Advanced Analytics, LLC.
    Hartmann, T., Slavíková, L., & Wilkinson, M. E. (2022). Spatial flood risk management: Implementing catchment-based retention and resilience on private land. Edward Elgar Publishing. https://doi.org/10.4337/9781800379534
    Hu, X., Liao, W., Wei, Y., Wei, Z., & Huang, S. (2024). Analysis of Land Use Change and Its Economic and Ecological Value under the Optimal Scenario and Green Development Advancement Policy: A Case Study of Hechi, China. Sustainability, 16(12), Article 12. https://doi.org/10.3390/su16125039
    Huang, W., Hashimoto, S., Yoshida, T., Saito, O., & Taki, K. (2021). A nature-based approach to mitigate flood risk and improve ecosystem services in Shiga, Japan. ECOSYSTEM SERVICES, 50, 101309. https://doi.org/10.1016/j.ecoser.2021.101309
    Hudson, P., & Botzen, W. J. W. (2019). Cost–benefit analysis of flood-zoning policies: A review of current practice. WIREs Water, 6(6), e1387. https://doi.org/10.1002/wat2.1387
    IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., doi:10.1017/9781009325844.
    Islam, K., Rahman, Md. F., & Jashimuddin, M. (2018). Modeling land use change using Cellular Automata and Artificial Neural Network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators, 88, 439–453. https://doi.org/10.1016/j.ecolind.2018.01.047
    Itsukushima, R., Ohtsuki, K., & Sato, T. (2024). Significance of land use as a flood control measure: Unveiling the historical and contemporary strategies in the unique case of Kofu basin alluvial fan, Japan. International Journal of Disaster Risk Reduction, 109, 104578. https://doi.org/10.1016/j.ijdrr.2024.104578
    Jokar Arsanjani, J., Helbich, M., Kainz, W., & Darvishi Boloorani, A. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275. https://doi.org/10.1016/j.jag.2011.12.014
    Ku, C.-A. (2016). Incorporating spatial regression model into cellular automata for simulating land use change. Applied Geography, 69, 1–9. https://doi.org/10.1016/j.apgeog.2016.02.005
    Ku, C.-A. (2024). Evaluating the effects of land-use strategies on future flood risk reduction in urban areas. Cities, 150, 104989. https://doi.org/10.1016/j.cities.2024.104989
    Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., & Sherstyukov, B. (2014). Flood risk and climate change: Global and regional perspectives. HYDROLOGICAL SCIENCES JOURNAL, 59(1), 1–28. https://doi.org/10.1080/02626667.2013.857411
    Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310
    Lim, W. H., Yamazaki, D., Koirala, S., Hirabayashi, Y., Kanae, S., Dadson, S. J., Hall, J. W., & Sun, F. (2018). Long-Term Changes in Global Socioeconomic Benefits of Flood Defenses and Residual Risk Based on CMIP5 Climate Models. EARTHS FUTURE, 6(7), 938–954. https://doi.org/10.1002/2017EF000671
    Lu, Q., Chang, N.-B., Joyce, J., Chen, A. S., Savic, D. A., Djordjevic, S., & Fu, G. (2018). Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Computers, Environment and Urban Systems, 68, 121–132. https://doi.org/10.1016/j.compenvurbsys.2017.11.006
    Ludy, J., & Kondolf, G. M. (2012). Flood risk perception in lands “protected” by 100-year levees. Natural Hazards, 61(2), 829–842. https://doi.org/10.1007/s11069-011-0072-6
    M. UNISDR (2009). UNISDR Terminology for Disaster Risk Reduction. United Nations International Strategy for Disaster Reduction (UNISDR) Geneva, Switzerland.
    Massazza, G., Bacci, M., Descroix, L., Ibrahim, M. H., Fiorillo, E., Katiellou, G. L., Panthou, G., Pezzoli, A., Rosso, M., Sauzedde, E., Terenziani, A., De Filippis, T., Rocchi, L., Burrone, S., Tiepolo, M., Vischel, T., & Tarchiani, V. (2021). Recent Changes in Hydroclimatic Patterns over Medium Niger River Basins at the Origin of the 2020 Flood in Niamey (Niger). Water, 13(12), Article 12. https://doi.org/10.3390/w13121659
    Mazzoleni, M., Dottori, F., Brandimarte, L., Tekle, S., & Martina, M. L. V. (2017). Effects of levee cover strength on flood mapping in the case of levee breach due to overtopping. Hydrological Sciences Journal, 62(6), 892–910. https://doi.org/10.1080/02626667.2016.1246800
    Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C. J. H., Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., & Macdonald, E. (2021). Causes, impacts and patterns of disastrous river floods. Nature Reviews Earth & Environment, 2(9), 592–609. https://doi.org/10.1038/s43017-021-00195-3
    Mitsova, D., Shuster, W., & Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, 99(2), 141–153. https://doi.org/10.1016/j.landurbplan.2010.10.001
    O’Donnell, E. C., & Thorne, C. R. (2020). Drivers of future urban flood risk. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2168), 20190216. https://doi.org/10.1098/rsta.2019.0216
    Pinter, N., Huthoff, F., Dierauer, J., Remo, J. W. F., & Damptz, A. (2016a). Modeling residual flood risk behind levees, Upper Mississippi River, USA. Environmental Science & Policy, 58, 131–140. https://doi.org/10.1016/j.envsci.2016.01.003
    Pinter, N., Huthoff, F., Dierauer, J., Remo, J. W. F., & Damptz, A. (2016b). Modeling residual flood risk behind levees, Upper Mississippi River, USA. Environmental Science & Policy, 58, 131–140. https://doi.org/10.1016/j.envsci.2016.01.003
    Pontius, R. G. (2000). Quantification error versus location error in comparison of categorical maps. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 66(8), 1011–1016.
    Punia, M., & Singh, L. (2012). Entropy Approach for Assessment of Urban Growth: A Case Study of Jaipur, INDIA. Journal of the Indian Society of Remote Sensing, 40(2), 231–244. https://doi.org/10.1007/s12524-011-0141-z
    Roberto, R., Barontini, S., & Ferri, M. (2015). Structural Residual Risk Due to Levee Failures in Flood Mapping. In G. Lollino, M. Arattano, M. Rinaldi, O. Giustolisi, J.-C. Marechal, & G. E. Grant (Eds.), Engineering Geology for Society and Territory—Volume 3 (pp. 449–452). Springer International Publishing. https://doi.org/10.1007/978-3-319-09054-2_92
    Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3), 938–943. https://doi.org/10.1016/j.mcm.2010.11.019
    Serra-Llobet, A., Tourment, R., Montané, A., & Buffin-Belanger, T. (2022). Managing residual flood risk behind levees: Comparing USA, France, and Quebec (Canada). Journal of Flood Risk Management, 15(2), e12785. https://doi.org/10.1111/jfr3.12785
    Sisay, G., Gessesse, B., Fürst, C., Kassie, M., & Kebede, B. (2023). Modeling of land use/land cover dynamics using artificial neural network and cellular automata Markov chain algorithms in Goang watershed, Ethiopia. Heliyon, 9(9), e20088. https://doi.org/10.1016/j.heliyon.2023.e20088
    Sun, H., Cheng, L., Li, Z., Wang, Q., & Teng, J. (2022). A land-use benefit evaluation system with case study verification. PLoS ONE, 17(7), e0271557. https://doi.org/10.1371/journal.pone.0271557
    Tanoue, M., Taguchi, R., Alifu, H., & Hirabayashi, Y. (2021). Residual flood damage under intensive adaptation. Nature Climate Change, 11(10), Article 10. https://doi.org/10.1038/s41558-021-01158-8
    Tariq, M. A. U. R., Farooq, R., & van de Giesen, N. (2020). Development of a Preliminary-Risk-Based Flood Management Approach to Address the Spatiotemporal Distribution of Risk under the Kaldor–Hicks Compensation Principle. Applied Sciences, 10(24), Article 24. https://doi.org/10.3390/app10249045
    Tariq, M. A. U. R., Rajabi, Z., & Muttil, N. (2021). An Evaluation of Risk-Based Agricultural Land-Use Adjustments under a Flood Management Strategy in a Floodplain. Hydrology, 8(1), Article 1. https://doi.org/10.3390/hydrology8010053
    Thaler, T., Hudson, P., Viavattene, C., & Green, C. (2023). Natural flood management: Opportunities to implement nature-based solutions on privately owned land. Wiley Interdisciplinary Reviews: Water, 10(3). Scopus. https://doi.org/10.1002/wat2.1637
    Tong, X., & Feng, Y. (2020). A review of assessment methods for cellular automata models of land-use change and urban growth. International Journal of Geographical Information Science, 34(5), 866–898. https://doi.org/10.1080/13658816.2019.1684499
    Wagner, S., Souvignet, M., Walz, Y., Balogun, K., Komi, K., Kreft, S., & Rhyner, J. (2021). When does risk become residual? A systematic review of research on flood risk management in West Africa. REGIONAL ENVIRONMENTAL CHANGE, 21(3), 84. https://doi.org/10.1007/s10113-021-01826-7
    Wang, B., Biasutti, M., Byrne, M. P., Castro, C., Chang, C.-P., Cook, K., Fu, R., Grimm, A. M., Ha, K.-J., Hendon, H., Kitoh, A., Krishnan, R., Lee, J.-Y., Li, J., Liu, J., Moise, A., Pascale, S., Roxy, M. K., Seth, A., … Zhou, T. (2021). Monsoons Climate Change Assessment. https://doi.org/10.1175/BAMS-D-19-0335.1
    Wang, H.-W., Castillo Castro, D. S., & Chen, G.-W. (2024). Managing residual flood risk: Lessons learned from experiences in Taiwan. Progress in Disaster Science, 23, 100337. https://doi.org/10.1016/j.pdisas.2024.100337
    Wang, L., Cui, S., Li, Y., Huang, H., Manandhar, B., Nitivattananon, V., Fang, X., & Huang, W. (2022). A review of the flood management: From flood control to flood resilience. Heliyon, 8(11), e11763. https://doi.org/10.1016/j.heliyon.2022.e11763
    Wang, S., & Zheng, X. (2023). Dominant transition probability: Combining CA-Markov model to simulate land use change. Environment, Development and Sustainability, 25(7), 6829–6847. https://doi.org/10.1007/s10668-022-02337-z
    Wasko, C., Nathan, R., Stein, L., & O’Shea, D. (2021). Evidence of shorter more extreme rainfalls and increased flood variability under climate change. Journal of Hydrology, 603, 126994. https://doi.org/10.1016/j.jhydrol.2021.126994
    White, G. F. (1958). Changes in Urban Occupance of Flood Plains in the United States. University of Chicago.
    White, G. F., Kates, R. W., & Burton, I. (2001). Knowing better and losing even more: The use of knowledge in hazards management. Global Environmental Change Part B: Environmental Hazards, 3(3), 81–92. https://doi.org/10.1016/S1464-2867(01)00021-3
    Zwirglmaier, V., Reimuth, A., & Garschagen, M. (2024). How suitable are current approaches to simulate flood risk under future urbanization trends? Environmental Research Letters, 19(7), 073003. https://doi.org/10.1088/1748-9326/ad536f

    QR CODE