| 研究生: |
黃婉婷 Huang, Wan-Ting |
|---|---|
| 論文名稱: |
螺旋型聲學雙曲透鏡與超常材料波傳現象之探討 Wave propagation in spiral acoustic hyperlens and metamaterial |
| 指導教授: |
王清正
WANG, CHING-CHENG |
| 共同指導教授: |
張怡玲
CHANG, I-LING |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 雙曲透鏡 、超常材料 、繞射極限 、次波長成像 |
| 外文關鍵詞: | hyperlens, subwavelength imaging, diffraction limit, metamaterial |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在探討材料的性質當中,介電係數和磁導率是描述物質基本電磁性質的物理量,然在自然界中,這些參數絕大部分是大於零的,但是藉由人造物質可實現小於零的材料參數或是自然界中不存在的材料特性。而相對於聲學介質也可以找出相對應電磁超常材料的聲學超常材料,聲學超常材料的特性可為波動工程及研究開創出新的可能性。
以往傳統透鏡的解析度會受到繞射極限的影響,使得近場的波源資訊無法在出透鏡端得到可解析的成像。本文所提及的聲學雙曲透鏡,目的為讓近場次波長圖形可在遠場解析。根據等效介質的理論,可利用層狀堆疊的均質材料來達成聲學異向性材料;藉由推導複數質量密度於波傳關係來探討單層的均質材料中的波傳與衰退距離;而幾何結構的設計可使聲學異向性材料應用於聲學雙曲透鏡,所以提出螺旋型聲學雙曲透鏡,模擬其點波源成像的放大效果優於一般圓柱型雙曲透鏡。數值方法中,本文利用有限元素法來模擬雙曲透鏡次波長成像的特性,並在長波極限下加以探討波傳在不同單層厚度組成的聲學異向性材料中的傳遞情形;以多重散射法計算多層圓柱的等效超常材料參數,實現螺旋型聲學雙曲透鏡。
若經過適當的設計,進而聲學雙曲透鏡未來可應用在非破壞性檢測、海底聲納、醫療檢測及微生物觀測上。
The permittivity and permeability are the basic quantity of electromagnetics in physics. Although almost all of natural material properties are positive, however, negative material properties can be realized by using artificial structures. Thus, what so-called “Metamaterial” is that materials have properties don’t exist in nature. Acoustic metamaterials, as a counterpart to electromagnetic metamaterials, can be explored as well. The novel properties of acoustic metamaterial will develop many possibilities in wave propagation design.
Resolution of conventional lens is generally constrained by diffraction limit. Therefore, we study the imaging properties of spiral acoustic hyperlens which can achieve far-field subwavelength imaging with high resolution. Based on effective medium theory, a hyperlens can be realized by an alternating layered structure of water and negative mass density that has nearly flat eguifrequency contours. To accomplish such an anisotropic medium, we had derived the relation between density and wave vector in a homogeneous material and calculated the effective dynamic mass density in acoustic metamaterial by multiple scattering theory. Simulation results have showed the spiral acoustic hyperlens has better amplification of image which can be used to propagate delicate details of a source for deep-subwavelength imaging. Furthermore, it can be applied to sonar, nondestructive testing, medical and biological examinations through a proper design.
[1] J. C. Bose, “On the rotation of plane of polarization of electric waves by a twisted structure,” Proceeding the Royal Society 63, 146-152 (1898)
[2] K. F. Lindman, “The last Hertzian, and a Harbinger of electromagnetic chirality,” IEEE 34, 24-30 (1914)
[3] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values ”, Soviet Physics Uspekhi 10, 509-514 (1968)
[4] D. R. Smith and N. Kroll, “Negative Refractive index in left-handed materials”, Phys. Rev. Lett. 85, 2933 (2000)
[5] N. Seddon and T. Bearpark, “Observation of the inverse Doppler effect”, Science 302, 1537-1540 (2003)
[6] Y. Zhang and J. Pacheo, “Cerenkov radiation in materials with negative permittivity and permeability”, Optic Express 11, 723-734 (2003)
[7] G. Anthony and G. Y. Elenftheriades, “Experimental verification of back wave radiation from a negative refractive index metamaterial”, J. Appl. Phys. 92, 5930-2935 (2002)
[8] D. V. Sivujhin, “The energy of electromagnetic fields in dispersive”, Optic Spektrosk 3, 308-312(1957)
[9] J. B. Pendry, A. J. Pendry and W. J. Stewart, “Extremely Low Frequency Plasmons in Metallic Mesostructures”, Phys. Rev. Lett. 76, 4773 (1996)
[10] J. B. Pendry and A. J. Holden, “Low frequency plasmas in thin wire structures”, J. Appl. Phys. 10, 4785-4809 (1998)
[11] J. B. Pendry, A. J. Holden and D. J. Robbins, “Magnetism from Conductors and Enhanced Nonlinear Phenomena”, IEEE 47, 2075-2084 (1999)
[12] D. R. Smith, D. C. Vier and W. Padilla, “Loop wire medium for investigating plasmons at microwave frequencies”, Appl. Phys. Lett. 75, 1425-1427 (1999)
[13] D. R. Smith, R. A. Shelby and S. Schultz, “Experimental Verification of a Negative Index of Refraction”, Science 292, 77-79 (2001)
[14] D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors”, Phys. Rev. Lett. 90, 077405 (2003)
[15] Z. Liu and P. Sheng, “Locally Resonant Sonic Materials”, Science 289, 8-10 (2000)
[16] C. Sun, N. Fang and X. Zhang, “Ultrasonic metamaterials with negative modulus”, Nature Materials 5, 452-454 (2007)
[17] L. Jensen and C. T. Chan, “Double-negative acoustic metamaterial”, Phys. Rev. E 70, 055602 (2004)
[18] P. Sheng, “Introduction to wave Scattering, Localization and Microscopic Phenomena, 2nd ed”, Springer, Berlin (2006)
[19] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 85, 3966-3969 (2000)
[20] G. Anthony and G. Y. Elenftheriades, “Practical limitation of Subwavelength Resolution Using Negative Refractive Index Transmission Line”, IEEE 53, 3201-3209 (2005)
[21] N. Fang and X. Zhang, “Experimental Study of Transmission Enhancement of Evanescent Wave through Silver Films”, Appl. Phys. A 80, 1315-1325 (2005)
[22] N. Fang and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens”, Science 308, 534-537 (2005)
[23] R. J. Blaikie and C. R. Wolf, “Submicron imaging with a planar silver lens”, Appl. Phys. Lett. 84, 4403-4405 (2004)
[24] N. Garcia and M. Niet, “Left Handed materials do not make a perfect lens”, Phys. Rev. Lett. 88, 207403-207407 (2003)
[25] J. B. Pendry and S. A. Ramakrishna, “Near field lenses in two dimensions”, J. Phys. 14, 8463-8479 (2002)
[26] D. R. Smith, J. B. Pendry and S. A. Ramakrishna, “The Asymmetric Lossy Near Perfect Lens”, J. Mordern Optics 49, 1747-1762 (2002)
[27] G. Santos, “Universal features of the time evolution of evanescent modes in a left handed Perfect Lens”, Phys. Rev. Lett. 90, 077401 (2003)
[28] G. Anthony and G. Y. Elenftheriades, “Growing evanescent waves in negative refractive index transmission line media”, Appl. Phys. Lett. 82, 1815-1817 (2003)
[29] J. B. Pendry and S. A. Ramakrishna, “Removal of absorption and increase in resolution in a near field lens via optical gain”, Phys. Rev. B 67, 201101 (2003)
[30] D. R. Smith, D. Schurig, M. Rosenbluth and J. B. Pendry, “Limitations on sub-diffraction imaging with a negative refractive index slab”, Appl. Phys. Lett. 82, 1506-1508 (2003)
[31] A. N. Lagarkov and V. N. Kissel, “Near Perfect Imaging in a Focusing System Based on a Left Handed Material Plate”, Phys. Rev. Lett. 92, 077401 (2004)
[32] R. Merlin, “Analytical solution of the almost perfect lens problem”, Appl. Phys. Lett. 82, 1506-1508 (2003)
[33] M. Ambati, N. Fang, C. Sun and X. Zhang, “Surface resonant states and superlensing in acoustic metamaterials”, Phys. Rev. B 75, 195447 (2007)
[34] S. Alessandro and N. Engheta, “Far-Field subdiffraction Optical microscopy using metamaterial crystals: Theory and simulations”, Phys. Rev. B 74, 075103 (2006)
[35] Z. Liu, H. Lee and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects”, Science 315, 1686 (2006)
[36] J. Robert, E. Michael and S. David, “Concepts and Applications of Finite Element Analysis, 4thed”, John Wiley: United States (2002)
[37] H. Larabi, Y. Pennec, B. D. Rouhani and J. O. Vasseur, “Multicoxial cylindrical inclusions in locally resonant phononic crystals”, Phys. Rev. E 75, 066601 (2007)
[38] G. T. Kuster and M. N. Toksoz, “Velocity and attenuation of seismic waves in two-phase media”, Geophysics 39, 587-589 (1974)
[39] G. Berryman, “Long-wavelength propagation in composite elastic media I. Spherical inclusions”, J. Acoustic Society of America 68, 1809-1814 (1980)
[40] J. Mei, Z. Liu, W. Wen and P. Sheng, “Effective dynamic mass density of composites”, Phys. Rev. B 76, 134205 (2007)
[41] M. Schoenberg, “Properties of a periodically stratified acoustic half-space and it’s relation to a Biot fluid”, J. Acoustic Society of America 73, 61-66 (1983)
[42] D. Torrent and D. J. Sanchez, “Anisotropic mass density by two-dimensional acoustic metamaterial” , New Journal of Physics 10, 023004 (2008)
[43] T. M. Grzegorczyk, M. Nikku, X. Chen, B. I. Wu, and J. A. Kong, “Refraction laws for anisotropic media and their application to left-handed metamaterials”, IEEE 53, 1443-1450 (2005)
[44] T. Dumelow, J. Alzamir, and V. N. Freire, “Slab lenses from simple anisotropic media”, Phys. Rev. B 72, 235115 (2005)
[45] W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction”, Phys. Rev. B 77, 233101 (2008)
[46] P. Moon, “Field Theory Handbook”, Springer Verlag, New York (2007)
[47] S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartaland X. Zhang, “Ray Optics at a Deep-Subwavelength Scale: A Transformation Optics Approach”, Nano Letts. 8, 4243-4247 (2008)
[48] S. A. Cummer, M.Rahm and D.Schurig, “Material parameters and vector scaling in transformation acoustics”, New Journal of Physics 10, 115025 (2008)
[49] J. B. Pendry and J. Li, “An acoustic metafluid: realizing a broadband acoustic cloak”, New Journal of Physics 10, 115032 (2008)
校內:2024-12-31公開