簡易檢索 / 詳目顯示

研究生: 林益生
Lin, Yi-Sheng
論文名稱: 液晶環氧樹脂/改質氮化硼填料複合材料之製備、鑑定及其熱機械性質研究
Preparation, Characterization, and Thermomechanical Properties of Liquid Crystalline Epoxy Resin Composites Filled with Functionalized Boron Nitride Fillers
指導教授: 許聯崇
Hsu, Steve Lien-Chung
共同指導教授: 何宗漢
Ho, Tsung-Han
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 106
中文關鍵詞: 液晶型環氧樹脂硬化劑氮化硼複合材料表面改質熱機械性質
外文關鍵詞: liquid crystalline epoxy resin, curing agent, boron nitride, composites, surface modification, thermomechanical properties
相關次數: 點閱:78下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的分為兩部分;第一部分為合成出三種不同介晶基團液晶型環氧樹脂(Liquid Crystalline Epoxy, LCE) 以及液晶型硬化劑,並鑑定其化學結構、熔點範圍及液晶相變化特性。LCEs分別添加液晶型與芳香族胺基硬化劑以探討其硬化反應,並在硬化過程中觀察雙折射液晶相。不同介晶基團硬化LCE之熱機械性質進行研究。其結果顯示含酮介晶基團LCE具有較高的玻璃轉移溫度、儲存模數、熱傳導係數以及較低的熱膨脹係數。此外,三種不同介晶基團LCE與常見環氧樹脂DGEBA相比,其結果顯示LCEs都有比較好的熱機械性質。
      第二部分則為了針對半導體封裝材料增強其熱機械性質,將氮化硼顆粒填入至酮介晶基團液晶型環氧樹脂 (LCE-K)去製備出一高性能複合材料(LCE-K/BN)。其做法為使用偶合劑 (APTES)將氮化硼顆粒進行表面改質,並利用傅里葉轉換紅外光譜鑑定改質後之結構變化。製備出以重量百分比0.5 至 5.0 %不同氮化硼含量LCE-K/BN 之複合材料並探討其熱機械性質與表面形態,其結果顯示出改質後氮化硼顆粒均勻地分散在LCE-K 基材上,可強化儲存模數、玻璃轉移溫度、衝擊強度以及熱膨脹係數之性質;而隨著氮化硼含量比例提高,熱傳導係數、熱穩定性及焦炭殘餘率隨之增加,其5.0 %氮化硼含量LCE-K/BN複合材料之熱傳導係數則高達0.7 W/m•K。另一方面,LCE-K/BN與DGEBA/BN複合材料進行比較,LCE-K/BN具有比較優越的熱機械性質。

    This study focuses on the synthesis of three different liquid crystalline epoxy (LCE) resins based on ketone, azine and azomethine mesogenic groups and a liquid crystalline curing agent with ester mesogenic group. The chemical structure, melting range, and liquid crystalline phase transition behavior of the LCE resins and liquid crystalline curing agent were characterized. The curing reaction of the LCE resins was investigated using liquid crystalline curing agent and aromatic diamine curing agent, respectively. Birefringence was also observed during the curing processes. The thermomechanical properties were investigated for the cured LCE resins with different mesogenic groups. These results showed that the cured LCE resin with ketone mesogenic group exhibited much higher glass transition temperature (Tg), storage modulus, and thermal conductivity, and a lower coefficient of thermal expansion (CTE) both in the glassy region and the rubbery region. In addition, three LCE cross-linked networks showed much higher thermomechanical properties compared to those of a common epoxy resin (DGEBA).
    In order to enhance the thermomechanical behaviors of epoxy molding compounds, the hexagonal boron nitride (h-BN) fillers were incorporated in a ketone mesogenic liquid crystalline epoxy (LCE-K) matrix to prepare high-performance epoxy composites. The h-BN was modified by a surface coupling agent (3-aminopropyltriethoxysilane, APTES), and characterized using Fourier transform infrared spectroscopy. The thermomechanical properties and morphologies of LCE-K/BN composites loading with different contents of modified BN fillers, ranging from 0.50 to 5.00 wt%, were investigated. These results showed that the modified BN fillers uniformly dispersed in LCE-K matrix, and enhanced in storage modulus, Tg, impact strength of the composites. They also decreased the CTE of the composites. The thermal stability and char yield of the LCE-K/BN composites were increased by increasing the amount of modified BN fillers. The thermal conductivity of LCE-K/BN composites was up to 0.7 W/m•K with 5.00 wt% modified BN fillers. Furthermore, the LCE-K/BN composites have excellent thermomechanical properties compared to those of the conventional DGEBA/BN epoxy composites.

    摘要 I ABSTRACT III 誌謝 V CONTENT VII List of Tables X List of Figures XI List of Schemes XV CHAPTER 1 INTRODUCTION 1 1-1 Preamble 1 1-2 Research objectives 3 CHAPTER 2 LITERATURE REVIEW 5 2-1 Liquid crystalline polymer 5 2-1-1 Liquid crystalline description 6 2-2 Liquid crystalline epoxy resin 8 2-2-1 Epoxy resin 8 2-2-2 Biphenyl mesogenic group 10 2-2-3 Ester mesogenic group 11 2-2-4 α-methylstilbene mesogenic group 12 2-2-5 Naphthalene mesogenic group 13 2-2-6 Imine mesogenic group 14 2-3 Thermal conductive composites 15 2-3-1 Al2O3 fillers 16 2-3-2 AlN fillers 18 2-3-3 BN fillers 19 CHAPTER 3 EXPERIMENTAL METHOD 22 3-1 Flow chart 22 3-2 Materials 24 3-3 Equipment 25 3-4 Synthesis of liquid crystalline epoxy resins and liquid crystalline curing agent 26 3-4-1 Synthesis of ketone mesogenic liquid crystalline epoxy (LCE-K) 26 3-4-2 Synthesis of azine mesogenic liquid crystalline epoxy (LCE-A) 30 3-4-3 Synthesis of azomethine mesogenic liquid crystalline epoxy (LCE-M) 33 3-4-4 Synthesis of liquid crystalline curing agent (LCC) 36 3-4-5 Curing process of liquid crystalline epoxy resin 38 3-5 Preparation of liquid crystalline epoxy resin composites with functionalized BN fillers 39 3-5-1 Surface modification of BN fillers 39 3-5-2 Preparation of LCE/BN composites 40 3-6 Characterization methods 41 CHAPTER 4 RESULTS AND DISCUSSION 44 4-1 Characterization and thermomechanical properties of liquid crystalline epoxy resins and liquid crystalline curing agent 44 4-1-1 Structural characterization 44 4-1-2 Mesomorphic phase transition of LCEs and LCC 56 4-1-3 Curing behavior of LCEs with LCC and DDM 63 4-1-4 Thermomechanical properties of LCE networks 70 4-2 Characterization and thermomechanical properties of liquid crystalline epoxy resin composites with functionalized boron nitride 79 4-2-1 Characterization of BN surface modification 79 4-2-2 Morphology observation of LCE-K/BN composites 80 4-2-2 Thermomechanical properties of LCE-K/BN Composites 84 CHAPTER 5 CONCLUSIONS 94 REFERENCES 96 Personal Information 104

    [1] D. Roşu, C. N. Caşcaval, F. Mustatǎ, and C. Ciobanu, Thermochim. Acta, 383, 119 (2002).
    [2] G. Liu, L. Zang, X. Qu, Y. Li, J. Gao, and L. Yang, J. Therm. Anal. Calorim., 65, 837 (2001).
    [3] D. Singh and A. K. Narula, J. Therm. Anal. Calorim., 100, 199 (2009).
    [4] T. H. Ho, Macromol. Mater. Eng., 283, 57 (2000).
    [5] T. H. Ho and C. H. Wang, Eur. Polym. J., 37, 267 (2001).
    [6] C. Tan, H. Sun, B. M. Fung, and B. P. Grady, Macromolecules, 33, 6249 (2000).
    [7] J. Cheng, J. Chen, and W. T. Yang, Chin. Chem. Lett., 18, 469 (2007).
    [8] Q. Guo, Y. Huang, Y. Y. Zhang, L. R. Zhu, and B. L. Zhang, J. Therm. Anal. Calorim., 102, 915 (2010).
    [9] M. Giamberini, E. Amendola, and C. Carfagna, Mol. Cryst. Liq. Cryst., 266, 9 (1995).
    [10] C. Carfagna, E. Amendola, and M.Giamberini, Prog. Polym. Sci., 22, 1607 (1997).
    [11] P. Castell, A. Serra, and M. Galia, J. Polym. Sci., Part A: Polym. Chem., 42, 3631 (2004).
    [12] R. J. McGlen, and R. Jachuck, Appl. Therm. Eng., 24, 1143 (2004).
    [13] S. V. Garimella, A. S. Fleischer, J. Y. Murthy, A. Keshavarzi, R. Prasher, C. Patel, S. H. Bhavnani, R. Venkatasubramanian, R. Mahajan, Y. Joshi, B. Sammakia, B. A. Myers, L. Chorosinski, M. Baelmans, P. Sathyamurthy, and P. E. Raad, Trans. Compon. Packag. Technol., IEEE 31, 801 (2008).
    [14] Y. C. Liang, J. N. Zhang, M. Li, Y. P. Guo, and J. S. Yuan, Prz. Elektrotechniczn., 88, 328 (2012).
    [15] P. Gonon, A. Sylvestre, J. Teysseyre, and C. Prior, J. Mater. Sci.: Mater. Electron., 12, 81 (2001).
    [16] Y. S. Lin, S. L. C. Hsu, T. H. Ho, S. S. Cheng, and Y. H. Hsiao, Polym. Eng. Sci., 57, 424 (2017).
    [17] Y. S. Lin, S. L. C. Hsu, T. H. Ho, L. C. Jheng, and Y. H. Hsiao, J. Polym. Res., 28 (2021).
    [18] Y. S. Lin, S. L. C. Hsu, T. H. Ho, L. C. Jheng, and Y. H. Hsiao, Polymers., 12, 1913 (2020).
    [19] M. H. Chung, L. M. Chen, W. H. Wang, Y. Lai, P. F. Yang, and H. P. Lin, J. Taiwan Inst. Chem. Eng., 45, 2813 (2014).
    [20] M. H. Chung, W. H. Wang, L. M. Chen, C. W. Lee, P. F. Yang, Y. S. Liao, and H. P. Lin, Compos. Part A Appl. Sci. Manuf., 78, 1 (2015).
    [21] P. G. de Gennes, J. Prost, The Physics of Liquid Crystals: Clarendon Press, 597 (1993).
    [22] C. Tan, H. Sun, B. M. Fung, and B. P. Grady, Macromolecules, 33, 6249 (2000).
    [23] Y. H. Ahn, M. S. Jung, and J. H. Chang, Mater. Chem. Phys., 123, 177 (2010).
    [24] M. Harada, N. Okamoto, and M. Ochi, J. Polym. Sci., Part B: Polym. Phys., 48, 2337 (2010).
    [25] P. Kannan and P. Sudhakara, High performance polymers and engineering plastics, 387 (2011).
    [26] J. O. Zoppe, L. Grosset, and J. Seppälä, Cellulose, 20, 2569 (2013).
    [27] E. P. Douglas, Liquid Crystalline Thermosets. Encyclopedia of Polymer Science and Technology: John Wiley & Sons, Inc., 2002.
    [28] R. A. M. Hikmet, and D. J. Broer, Polymer, 32, 1627(1991)
    [29] R. A. M. Hikmet, J. Lub, and P. M. Vanderbrink, Macromolecules, 25, 4194(1992).
    [30] M. H. Litt, W. T. Whang, K. T. Yen, and X. J. Qian, J. Polym. Sci. A Polym. Chem., 31, 183(1993).
    [31] D. Holter, H. Frey, R. Mulhaupt, and J. E. Klee, Macromolecules, 29, 7003(1996).
    [32] G. G. Barclay, C. K. Ober, K. I. Papathomas, and D. W. Wang, Macromolecules, 25, 2947(1992).
    [33] W. Mormann, and J. Zimmermann, Liq. Cryst., 19, 227(1995).
    [34] W. Mormann, and J. Zimmermann, Macromolecules, 29, 1105(1996).
    [35] W. Mormann, and C. Kuckertz, Macromol. Chem. Phys., 199, 845(1998).
    [36] A. E. Hoyt, and B. C. Benicewicz, J. Polym. Sci. A Polym. Chem., 28, 3403(1990).
    [37] A. E. Hoyt, and S. J. Huang, J. Macromol. Sci., 32, 1931(1995).
    [38] A. E. Hoyt, and B. C. Benicewicz, J. Polym. Sci. A Polym. Chem., 28, 3417(1990).
    [39] D. Andrienko , J. Mol. Liq., 22(2018).
    [40] G. G. Barclay, and C. K. Ober, Prog. Polym. Sci., 18, 899(1993).
    [41] A. Shiota, and C. K. Ober, Prog. Polym. Sci., 22, 975(1997).
    [42] F. Xu, and Y. Xin, T. Li, Polymer, 140, 269(2018).
    [43] H. J. Sue, J. D. Earls, and R. E. Hefner, J. Mater. Sci., 32, 4031(1997).
    [44] C. Ortiz, R. Kim, E. Rodighiero, C. K. Ober, and E. J. Kramer, Macromolecules, 31, 4074(1998).
    [45] M. Harada, N. Okamoto, and M. Ochi, J. Polym. Sci., Part B: Polym. Phys., 48, 2337(2010).
    [46] P. Kannan and P. Sudhakara, High performance polymers and engineering plastics, 387(2011).
    [47] J. Lange, and J. A. E. Manson, Polymer, 37, 5859(1996).
    [48] M. S. Bhatnagar, Polym. Plast. Technol. Eng., 32, 53(1993).
    [49] H. Lee and K. Neville, Handbook of epoxy resins; McGraw-Hill, New York, 4 (1967).
    [50] W-F. A. Su, J. Polym. Sci., Part A: Polym. Chem., 31, 3251 (1993).
    [51] W. Mormann and M. Bröcher, Macromol. Chem. Phys., 197, 1841(1996).
    [52] M. Ochi, Y. Shimizu, Y. Nakanishi, and Y. Murata, J. Polym. Sci., Part B: Polym. Phys., 35, 397(1997).
    [53] J. Y. Lee, J. Jang, S. S. Hwang, S. M. Hong, and K. U. Kim, Polymer, 39, 6121(1998).
    [54] P. Punchaipetch, V. Ambrogi, M. Giamberini, W. Brostow, C. Carfagna, and N. A. D'Souza, Polymer, 42, 2067(2001).
    [55] G. Liu, J. Gao, L. Song, W. Hou, and L. Zhang, Macromol. Chem. Phys., 207, 2222(2006).
    [56] C. Carfagna, E. Amendola, and M. Giamberini, J. Mater. Sci. Lett., 13, 126(1994).
    [57] J. Y. Lee, J. Jang, S. M. Hong, S. S. Hwang, and K. U. Kim, Polymer, 40, 3197(1999).
    [58] K. Sadagopan, D. Ratna, and A. B. Samui, J. Polym. Sci., Part A: Polym. Chem., 41, 3375(2003).
    [59] J. Y. Lee and J. Jang, Polymer, 47, 3036(2006).
    [60] Z. Q. Cai, Q. Zhou, and J. Xu, J. Polym. Sci., Part A: Polym. Chem., 45, 727(2007).
    [61] G. D. Liu, B. Zhou, D. M. Zhao, Q. Li, and J. G. Gao, Macromol. Chem. Phys., 209, 1160(2008).
    [62] Y. L. Liu, Z. Q. Cai, X. Wen, P. Pi, D. Zheng, J. Cheng, and Z. Yang, Polym. Bull., 67, 57(2011).
    [63] G. G. Barclay, C. K. Ober, K. I. Papathomas, and D. W. Wang, J. Polym. Sci., Part A: Polym. Chem., 30, 1831(1992).
    [64] C. Carfagna, E. Amendola, M Giamberini, and A. G. Filippov, R. S. Bauer, Liq. Cryst., 13, 571(1993).
    [65] Q. H. Lin, A. F. Yee, J. D. Earls, R. E. Hefiner Jr., and H. Sue, Polymer, 35, 2679(1994).
    [66] M. Giamberini, E. Amendola, and C. Carfagna, Macromol. Rapid Commun., 16, 97(1995).
    [67] H. J. Sue, J. D. Earls, and R. E. Hefner Jr., J. Mater. Sci., 32, 4039(1997).
    [68] S. H. Cho, J. Y. Lee, and E. P. Douglas, High Perform. Polym., 18, 83(2006).
    [69] C. Carfagna, E. Amendola, and M. Giamberini, Macromol. Chem. phys., 195, 2307(1994).
    [70] J. Y. Lee and J. Jang, J. Polym. Sci., Part A: Polym. Chem., 37, 419(1999).
    [71] C. Carfagna, E. Amendola, M. Giamberini, and A. G. Filippov, Macromol. Chem. phys., 195, 279(1994).
    [72] P. Castell, M. Galia, and A. Serra, Macromol. Chem. Phys., 202, 1649(2001).
    [73] M. Harada, K. Aoyama, and M. Ochi, J. Polym. Sci., Part B: Polym. Phys., 42, 4044(2004).
    [74] K. Hirao, K. Watari, H. Hayashi, and M. Kitayama, MRS Bull., 26, 451(2001).
    [75] S. Y. Wu, Y. L. Huang, C. C. M. Ma, S. M. Yuen, C. C. Teng, and S. Y. Yang, Comps. Part A, 42, 1573(2011).
    [76] A. Greco, C. E. Corcione, and J. Maffezzoli, Mem. Sci., 505, 92(2016).
    [77] X. Huang, P. Jiang, T. Tanaka, IEEE T. Dielect. El. In., 27, (2011)
    [78] D. K. Shukla, S. V. Kasisomayajula, V. Parameswaran, Compos. Sci. Technol., 68, 3005 (2008)
    [79] J. F. Fu, L. Y. Shi, Q. D. Zhong, Y. Chen, L. Y. Chen, Polym. Adv. Technol., 22, 1032 (2011)
    [80] L. Fang, C. Wu, R. Qian, L. Xie, K. Yang, P. Jiang, RSC Adv., 40, 21010 (2014)
    [81] Z. Yu, H. Di, Y. Ma, L. Lv, Y. Pan, C. Zhang, Y. He, Appl. Surf. Sci., 351, 986 (2015)
    [82] M. W. Akhtar, Y. S. Lee, D. J. Yoo, J. S. Kim, Compos. Part B-Eng., 131, 184 (2017)
    [83] G. Lazouziet, M. M. Vuksanović, N. Z. Tomić, M. Mitrić, M. Petrović, V. Radojević, R. J. Heinemann, Ceram. Int., 44, 7442 (2018)
    [84] C. Y. Hsieh, S. L. Chung, ‎J. Appl. Polym. Sci., 102, 4734(2006)
    [85] C. C. Teng, C. C. M. Maa, K. C. Chiou, T. M. Lee, Compos. Part B-Eng., 43, 265(2012)
    [86] M. Choudhury, S. Mohanty, S. K. Nayak, Polym. Compos., 34, 1(2013)
    [87] R. Qiana, J. Yua, L. Xiea, Y. Lia, P. Jianga, Polym. Adv. Technol., 24, 348(2013)
    [88] Z. He, W. Dai, J. Yu, L. Pan, X. Xiao, S. Lu, N. Jiang, J. Polym. Res., 21, 595(2014)
    [89] Y. Wang, X. Qiao, J. Wan, Y. Xiao, X. Fan, RSC Adv., 6, 80262(2016)
    [90] T. L. Li, and S. L. C. Hsu, J. Phys. Chem. B, 114, 6825(2010)
    [91] M. Harada, N. Hamaura, M. Ochi, Y. Agari, Compos. Part B-Eng., 55, 306(2013)
    [92] J. Hou, G. Li, N. Yang, L. Qin, M. E. Grami, Q. Zhang, N. Wang, X. Qu, RSC Adv., 4, 44282(2014)
    [93] N. Yang, Chen Xu, J. Hou, Y. Yao, Q. Zhang, M. E. Grami, L. He, N. Wanga, X. Qu, RSC Adv., 6, 18279(2016)
    [94] K. Wu, C. Lei, W. Yang, S. Chai, F. Chen, Q. Fu, Compos. Sci. Technol, 134, 191(2016)
    [95] G. Mittala, K. Y. Rheea, S. J. Park, Appl. Surf. Sci., 415, 49(2017)
    [96] B. X. Du, H. C. Liang, J. Li, C. Zhang, IEEE T. Dielect. El. In., 25, (2017)
    [97] B. M. Umesh Gowda, H. V. Ravindra, G. V.Naveen Prakash, P. Nishanth, G. Ugrasen, Materials Today: Proceedings, 2, 2852(2015)
    [98] A. Ma, W. Chen, Y. Hou, Polym. Plast. Technol. Eng., 27, 1578(2012)
    [99] S. Hsu, M. C. Wu, S. Chen, C. M. Chuang, S. H. Lin, W. F. Su, Carbon, 50, 896(2012)
    [100] A. Kausar, I. Rafique, Z. Anwar, B. Muhammad, Polymer Plast. Tech. Eng., 55, 704(2016)
    [101] S. Pourhashem, M. Reza Vaezi, A. Rashidi, M. R. Bagherzadeh, Corros. Sci., 115, 78(2017)
    [102] K. Nam, K. Hong, H. Park, and H. Choe, J. Eur. Ceram. Soc., 38, 1164(2018).
    [103] M. Koperski, K. Nogajewski, and M. Potemski, Opt. Commun., 411, 158(2018).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE