| 研究生: |
高子甯 Kao, Zi-Ning |
|---|---|
| 論文名稱: |
LvSIRT1參與白點症病毒複製 LvSIRT1 is involved in WSSV replication |
| 指導教授: |
王涵青
Wang, Han-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 白點症病毒 、SIRT1 、轉錄因子(NF-κB) 、WSSV ie1啟動子 |
| 外文關鍵詞: | White spot syndrome virus, SIRT1, transcription factor (NF-κB), WSSV ie1 promoter |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白點症病毒(WSSV)是導致白點症(WSD)的病原體,它可以導致高死亡率,並且為世界蝦類養殖界帶來巨大的經濟損失,且白點症病毒如何利用細胞因子幫助其複製至今仍是未知數。SIRT1是NAD +依賴性蛋白質脫乙醯酶,目前已知其在哺乳類動物中,SIRT1為活化或抑制病毒轉錄和複製的調節因子。在本研究中,首先運用實驗室中已建立的白蝦轉錄體資料庫找出LvSIRT1基因。其後研究發現LvSIRT1的脫乙醯酶活性在WSSV複製的早期(2 hpi)和基因組複製階段(12 hpi)被顯著活化。為進一步證實LvSIRT1在白點症病毒複製期間所扮演的角色,本研究用SIRT1活化劑白藜蘆醇(Resveratrol)進行動物實驗,證實LvSIRT1的活化促進了病毒基因表現(ie1、VP28和ICP11);另外,在使用dsRNA對LvSIRT1進行基因默化,造成病毒複製數顯著下降。本研究運用Sf9昆蟲細胞進行轉染及雙重螢光素酶報告基因檢測實驗,發現過度表現LvSIRT1促進WSSV ie1啟動子的活性,目前已知ie1啟動子p(-268 / + 52)上存在四種轉錄因子結合域,並且透過ie1啟動子之轉錄因子點突變實驗,發現當NF-κB轉錄位點突變後ie1啟動子有更高的活性。總結本研究所得,LvSIRT1應該會促進非NF-κB所調控的WSSV ie1表現。
White spot syndrome virus (WSSV) causes White spot disease (WSD) and has resulted in huge losses in global shrimp aquaculture. Since the mechanisms of cellular factors that modulate replication of white spot syndrome virus (WSSV) still remains unknown. A growing evidence from literature suggests that SIRT1 is NAD+-dependent protein deacetylase that promotes or suppresses the activity of coactivators and cellular transcription factors to regulate several cellular processes. Perhaps WSSV uses SIRT1 to facilitate its replication. Here, we focus on the involvement of SIRT1 in viral replication. In this study, based on our in-house transcriptomic database, LvSIRT1 was identified and characterized from white shrimp. Firstly, we found that the deacetylase activity of LvSIRT1 was significantly induced at the early stage (2 hpi) and the genome replication stage (12 hpi) of WSSV replication, while decreased at the late stage of WSSV replication (24 hpi). To further confirm the roles of LvSIRT1 during WSSV infection, in vivo experiments were conducted with the SIRT1 activator Resveratrol, showed that the activation of LvSIRT1 increased the expression of several WSSV genes (ie1, VP28 and ICP11). Furthermore, after silencing the LvSIRT1 in shrimp using specific dsRNA, the expression of WSSV genome copies was suppressed. Therefore, we suggest that LvSIRT1 might induce WSSV gene transcription to promote WSSV replication. Here we showed that the overexpression of LvSIRT1 let to the controlled enhancement of immediate-early gene ie1 promoter activity by using the dual luciferase assay in Sf9 insect cells. Previous studies have shown the presence of four kinds of transcriptional factor binding motifs in ie1 promoter p(-268/+52). These transcription factors might be regulated by LvSIRT1. In mutation of transcription factor binding sites experiment, luciferase activity was a slight increase at the mNF-κB construct. Furthermore, LvSIRT1 could be involved in the NF-κB-independent transactivation to trigger the expression of WSSV ie1.
何舒莛,白點症病毒於基因體複製時期活化麩醯胺酸代謝作用之氧化與還原路徑,國立成功大學生物科技與產業科學系碩士論文,2018。
曾怡婷,探討蝦類Ras及其下游路徑在感染白點症病毒後代謝路徑轉移過程中所扮演之角色,國立成功大學生物科技與產業科學系碩士論文,2018。
蘇美安,雷帕黴素標靶蛋白訊息傳遞路徑在白點症病毒之致病機轉中所扮演之角色,國立成功大學生物科技研究所碩士論文,2013。
Avalos, J. L., Bever, K. M. and Wolberger, C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Molecular Cell 17, 855-868, 2005.
Beauharnois, J. M., Bolívar, B. E. and Welch, J. T. Sirtuin 6: a review of biological effects and potential therapeutic properties. Molecular BioSystems 9, 1789-1806, 2013.
Belloni, L., Pollicino, T., De Nicola, F., Guerrieri, F., Raffa, G., Fanciulli, M., Raimondo, M. and Levrero, M. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proceedings of the National Academy of Sciences of the United States of America 106, 19975-19979, 2009.
Borra, M. T., Smith, B. C. and Denu, J.M. Mechanism of human SIRT1 activation by resveratrol. Journal of Biological Chemistry 280, 17187-17195, 2005.
Bosch-Presegué, L. and Vaquero, A. The dual role of sirtuins in cancer. Genes Cancer 2, 648-662, 2011.
Budayeva, H. G., Rowland, E. A. and Cristea, I. M. Intricate roles of mammalian sirtuins in defense against viral pathogens. Journal of Virology 90, 5-8, 2015.
Buler, M., Andersson, U. and Hakkola, J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. The Federation of American Societies for Experimental Biology Journal 30, 3942-3960, 2016.
Campagna, M., Herranz, D., Garcia, M. A., Marcos-Villar, L., González-Santamaría, J., Gallego, P., Gutierrez, S., Collado, M., Esteban, M. and Rivas, C. SIRT1 stabilizes PML promoting its sumoylation. Cell Death and Differentiation 18, 72, 2011.
Cantó, C. and Auwerx, J. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacological Reviews 64, 166-187, 2012.
Carafa, V., Altucci, L. and Nebbioso, A. Dual tumor suppressor and tumor promoter action of sirtuins in determining malignant phenotype. Frontiers in Pharmacology 10, 38, 2019.
Chang, H. C. and Guarente, L. SIRT1 and other sirtuins in metabolism. Trends in Endocrinology and Metabolism 25, 138-145, 2014.
Chao, S. C., Chen, Y. J., Huang, K. H., Kuo, K. L., Yang, T. H., Huang, K. Y., Wang, C. C., Tang, C. H., Yang, R. S. and Liu, S. H. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Scientific Reports 7, 1-11, 2017.
Chen, L. L., Wang, H. C., Huang, C. J., Peng, S. E., Chen, Y. G., Lin, S. J., Chen, W. Y., Dai, C. F., Yu, H. T., Wang, C. H. Lo, C. F. and Kou, G. H. Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus. Virology 301, 136-147, 2002.
Chen, I. T., Aoki, T., Huang, Y. T., Hirono, I., Chen, T. C., Huang, J. Y., Chang, G. D., Lo, C. F. and Wang, H. C. White spot syndrome virus induces metabolic changes resembling the warburg effect in shrimp hemocytes in the early stage of infection. Journal of Virology 85, 12919-12928, 2011.
Chen, Y. H., Jia, X. T., Huang, X. D., Zhang, S., Li, M., Xie, J. F., Weng, S. P.and He, J. G. Two Litopenaeus vannamei HMGB proteins interact with transcription factors LvSTAT and LvDorsal to activate the promoter of white spot syndrome virus immediate-early gene ie1. Molecular Immunology 48, 793-799, 2011.
Chung, S., Yao, H., Caito, S., Hwang, J.W., Arunachalam, G. and Rahman, I. Regulation of SIRT1 in cellular functions: role of polyphenols. Archives of Biochemistry and Biophysics 501, 79-90, 2010.
Corbel, V., Zuprizal, Z., Shi, C., Arcier, J. M. and Bonami, J. R. Experimental infection of European crustaceans with white spot syndrome virus (WSSV). Journal of Fish Diseases 24, 377-382, 2001.
Correia, M., Perestrelo, T., Rodrigues, A. S., Ribeiro, M. F., Pereira, S. L., Sousa, M. I. and Ramalho-Santos, J. Sirtuins in metabolism, stemness and differentiation. Biochimica et Biophysica Acta (BBA)-General Subjects 1861, 3444-3455, 2017.
Curtil, C., Enache, L. S., Radreau, P., Dron, A. G., Scholtès, C., Deloire, A., Roche, D., Lotteau, V., André, P. and Ramière, C. The metabolic sensors FXRα, PGC-1α, and SIRT1 cooperatively regulate hepatitis B virus transcription. The Federation of American Societies for Experimental Biology Journal 28, 1454-1463, 2014.
Dai, H., Case, A. W., Riera, T. V., Considine, T., Lee, J. E., Hamuro, Y., Zhao, H., Jiang, Y., Sweitzer, S. M., Pietrak, B., Schwartz, B., Blum, C. A., Disch, J. S., Caldwell, R., Szczepankiewicz, B., Oalmann, C., Yee, Ng. P., White, B. H., Casaubon, R., Narayan, R., Koppetsch, K., Bourbonais, F., Wu, B., Wang, J., Qian, D., Jiang, F., Mao, C., Wang, M., Hu, E., Wu, J. C., Perni, R. B., Vlasuk, G. P. and Ellis, J. L. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Nature Communications 6, 1-10, 2015.
Dali‐Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K. and Auwerx, J. Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of Medicine 39, 335-345, 2007.
Davenport, A. M., Huber, F. M. and Hoelz, A. Structural and functional
analysis of human SIRT1. Journal of Molecular Biology 426, 526-541, 2014.
Deng, J. J., Kong, K. Y. E., Gao, W. W., Tang, H. M. V., Chaudhary, V., Cheng, Y., Zhou, J., Chan, C.P., Wong, D. K., Yuen, M. F. and Jin, D. Y. Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1860, 491-501, 2017.
Dey, B. K., Dugassa, G. H., Hinzano, S. M. and Bossier, P. Causative agent, diagnosis and management of white spot disease in shrimp: A review. Reviews in Aquaculture 12, 822-865, 2019.
Elesela, S., Morris, S. B., Narayanan, S., Kumar, S., Lombard, D. B., Lukacs, N. W. Sirtuin 1 regulates mitochondrial function and immune homeostasis in respiratory syncytial virus infected dendritic cells. PLoS Pathogens 16, e1008319, 2020.
Escobedo-Bonilla, C. M., Alday-Sanz, V., Wille, M., Sorgeloos, P., Pensaert, M. B. and Nauwynck, H. J. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. Journal of Fish Diseases 1, 1-18, 2008.
Feige, J. N. and Auwerx, J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Current Opinion in Cell Biology 20, 303-309, 2008.
Frankel, S., Ziafazeli, T. and Rogina, B. dSir2 and longevity in Drosophila. Experimental Gerontology 46, 391-396, 2011.
Gao, H., Wang, Y., Li, N., Peng, W. P., Sun, Y., Tong, G. Z., and Qiu, H. J. Efficient gene delivery into mammalian cells mediated by a recombinant baculovirus containing a whispovirus ie1 promoter, a novel shuttle promoter between insect cells and mammalian cells. Journal of Biotechnology 131, 138-143, 2007.
Ghisays, F., Brace, C. S., Yackly, S. M., Kwon, H. J., Mills, K. F., Kashentseva, E., Dmitriev, I. P., Curiel, D. T., Imai, S. I. and Ellenberger, T. The N-terminal domain of SIRT1 is a positive regulator of endogenous SIRT1-dependent deacetylation and transcriptional outputs. Cell Reports 10, 1665-1673, 2015.
Giblin, W., Skinner, M. E. and Lombard, D. B. Sirtuins: guardians of mammalian healthspan. Trends in Genetics 30, 271-286, 2014.
Guarente, L. Diverse and dynamic functions of the Sir silencing complex. Nature Genetics 23, 281-285, 1999.
Han, Y., Wang, L., Cui, J., Song, Y., Luo, Z., Chen, J., Xiong, Y., Zhang, Q., Liu, F., Ho, W., Liu, Y., Wu, K and Wu, J. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5′ UTR RNA. Journal of Cell Science 129, 4534-4547, 2016.
Harwig, A., Landick, R. and Berkhout, B. The battle of RNA synthesis: Virus versus host. Viruses 9, 309, 2017.
He, F., Ho, Y., Yu, L. and Kwang, J. WSSV ie1 promoter is more efficient than CMV promoter to express H5 hemagglutinin from influenza virus in baculovirus as a chicken vaccine. Biomed Central Genomics Microbiology 8, 238, 2008.
He, S. T., Lee, D. Y., Tung, C. Y., Li, C. Y. and Wang, H. C. Glutamine metabolism in both the oxidative and reductive directions is triggered in shrimp immune cells (hemocytes) at the WSSV genome replication stage to benefit virus replication. Frontiers in Immunology 10, 2102, 2019.
Houtkooper, R. H., Canto, C., Wanders, R. J. and Auwerx, J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocrine Reviews 31, 194-223, 2010.
Huang, X. D., Zhao, L., Zhang, H. Q., Xu, X. P., Jia, X. T., Chen, Y. H., Wang, P. H., Weng, S. P., Yu, X. Q., Yin, Z. X. and He, J. G. Shrimp NF-κB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity. Virology 406, 176-180, 2010.
Huang, J. Y., Liu, W. J., Wang, H. C., Lee, D. Y., Leu, J. H., Wang, H. C., Tsai, M. H., Kang, S. T., Chen, I. T., Kou, G. H., Chang, G. D. and Lo, C. F. Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1. Antioxidants and Redox Signaling 17, 914-926, 2012.
Kaeberlein, M., McVey, M. and Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes and Development 13, 2570-2580, 1999.
Kemper, J. K., Xiao, Z., Ponugoti, B., Miao, J., Fang, S., Kanamaluru, D., Tsang, S., Wu, S. Y., Chiang, C. M. and Veenstra, T. D. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metabolism 10, 392-404, 2009.
Koyuncu, E., Budayeva, H. G., Miteva, Y. V., Ricci, D. P., Silhavy, T. J., Shenk, T. and Cristea, I. M. Sirtuins are evolutionarily conserved viral restriction factors. MBio 5, e02249-14, 2014.
Kwon, H. S., Brent, M. M., Getachew, R., Jayakumar, P., Chen, L. F., Schnolzer, M., McBurney, M. W., Marmorstein, R., Greene, W. C. and Ott, M. Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host and Microbe 3, 158-167, 2008.
Langsfeld, E. S., Bodily, J. M. and Laimins, L. A. The deacetylase sirtuin 1 regulates human papillomavirus replication by modulating histone acetylation and recruitment of DNA damage factors NBS1 and Rad51 to viral genomes. PLoS Pathogens 11, e1005181, 2015.
Leu, J. H., Chang, C. C., Wu, J. L., Hsu, C. W., Hirono, I., Aoki, T., Juan, H. F., Lo, C. F., Kou, G. H. and Huang, H. C. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BioMed Central Genomics 8, 120, 2007.
Leu, J. H., Kuo, Y. C., Kou, G. H. and Lo, C. F. Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Developmental and Comparative Immunology 32, 121-133, 2008.
Leyton, L., Hott, M., Acuña, F., Caroca, J., Nuñez, M., Martin, C., Zambrano, A., Concha, M. I. and Otth, C. Nutraceutical activators of AMPK/Sirt1 axis inhibit viral production and protect neurons from neurodegenerative events triggered during HSV-1 infection. Virus Research 205, 63-72, 2015.
Li, F., Li, M., Ke, W., Ji, Y., Bian, X. and Yan, X. Identification of the immediate-early genes of white spot syndrome virus. Virology 385, 267-274, 2009.
Li, C., Li, H., Wang, S., Song, X., Zhang, Z., Qian, Z., Zuo, H., Xu, X., Weng, S., He, J. The c-Fos and c-Jun from Litopenaeus vannamei play opposite roles in Vibrio parahaemolyticus and white spot syndrome virus infection. Developmental and Comparative Immunology 52, 26-36, 2015.
Lightner, D. V. Global transboundry disease politics: The OIE perspective. Journal of Invertebrate Pathology 110, 184-187, 2012.
Lin, Z. and Fang, D. The roles of SIRT1 in cancer. Genes Cancer 4, 97-104, 2013.
Liu, W. J., Chang, Y. S., Wang, C. H., Kou, G. H. and Lo, C. F. Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology 334, 327-341, 2005.
Liu, W. J., Chang, Y. S., Wang, A. H. J., Kou, G. H. and Lo, C. F. White spot syndrome virus annexes a shrimp STAT to enhance expression of the immediate-early gene ie1. Journal of Virology 81, 1461-1471, 2007.
Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D. J., Cole, P., Yates, J., Olefsky, J. Guarente, L. and Montminy, M. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269, 2008a.
Liu, W. J., Chang, Y. S., Huang, W. T., Chen, I. T., Wang, K. H. C., Kou, G. H. and Lo, C. F. Penaeus monodon TATA box-binding protein interacts with the white spot syndrome virus transactivator IE1 and promotes its transcriptional activity. Journal of Virology 85, 6535-6547, 2010.
Liu, W. J., Chang, Y. S., Wang, H. C., Leu, J. H., Kou, G. H. and Lo, C. F. Transactivation, dimerization, and DNA-binding activity of white spot syndrome virus immediate-early protein IE1. Journal of Virology 82, 11362-1137, 2008b.
Lo, C. F., Leu, J. H., Ho, C. H., Chen, C. H., Peng, S. E., Chen, Y. T., Chou, C. M., Yeh, P. Y., Huang, C. J., Chou, H. Y., Wang, C. H. and Kou, G. H. Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Diseases of Aquatic Organisms 25, 133-141, 1996.
Ma, G., Yu, L., Wang, Q., Liu, W., Cui, Y. and Kwang, J. Sf-PHB2, A new transcription factor, Drives WSSV Ie1 Gene Expression via a 12-bp DNA Element. Virology Journal 9, 206, 2012.
Marks, H., Vorst, O., van Houwelingen, A. M., van Hulten, M. C. and Vlak, J. M. Gene-expression profiling of White spot syndrome virus in vivo. Journal of General Virology 86, 2081-2100, 2005.
Martin, C., Leyton, L., Arancibia, Y., Cuevas, A., Zambrano, A., Concha, M. I. and Otth, C. Modulation of the AMPK/Sirt1 axis during neuronal infection by herpes simplex virus type 1. Journal of Alzheimer's Disease 42, 301-312, 2014.
Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M. and Guarente, L. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563, 2004.
Nakagawa, T. and Guarente, L. Sirtuins at a glance. Journal of Cell Science 124, 833-838, 2010.
Ng, T. H., Lu, C. W., Lin, S. S., Chang, C. C., Tran, L. H., Chang, W. C., Lo, C. F. and Wang, H. C. The Rho signalling pathway mediates the pathogenicity of AHPND‐causing V. parahaemolyticus in shrimp. Cellular Microbiology 20, e12849, 2018.
Nie, J., Yu, Z., Yao, D., Wang, F., Zhu, C., Sun, K., Aweya, J. J. and Zhang, Y. Litopenaeus vannamei sirtuin 6 homolog (LvSIRT6) is involved in immune response by modulating hemocytes ROS production and apoptosis. Fish and Shellfish Immunology 98, 271-284, 2020.
North, B. J. and Verdin, E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biology 5, 224, 2004.
Olmos, Y., Brosens, J. J. and Lam, E. W. F. Interplay between SIRT proteins and tumour suppressor transcription factors in chemotherapeutic resistance of cancer. Drug Resistance Updates 14, 35-44, 2011.
Ong, A. L. and Ramasamy, T. S. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Research Reviews 43, 64-80, 2018.
Pagans, S., Pedal, A., North, B. J., Kaehlcke, K., Marshall, B. L., Dorr, A., Hetzer-Egger, C., Henklein, P., Frye, R., McBumey, M. W., Hruby, H., Jung, M., Verdin, E. and Ott, M. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biology 3, e41, 2005.
Pillarisetti, S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent patents on Cardiovascular Drug Discovery 3, 156-164, 2008.
Purushotham, A., Schug, T. T., Xu, Q., Surapureddi, S., Guo, X. and Li, X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metabolism 9, 327-338, 2009.
Rahman, S. and Islam, R. Mammalian Sirt1: insights on its biological functions. Cell Communication and Signaling 9, 11, 2011.
Rahman, M., Nirala, N. K., Singh, A., Zhu, L. J., Taguchi, K., Bamba, T., Fukusaki, E., Shaw, L. M., Lambright, D. G., Acharya, J. K. and Acharya, U. R. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. Journal of Cell Biology 206, 289-305, 2014.
Rawlinson, S. M., Zhao, T., Rozario, A. M., Rootes, C. L., McMillan, P. J., Purcell, A. W., Woon, A., Marsh, G. A., Lieu, K. G., Wang, L. F., Netter, H. J., Bell, T. D. M., Stewart, C. R. and Moseley, G. W. Viral regulation of host cell biology by hijacking of the nucleolar DNA-damage response. Nature Communications 9, 1-13, 2018.
Ren, J. H., Tao, Y., Zhang, Z. Z., Chen, W. X., Cai, X. F., Chen, K., Ko, B. C., Song, C. L., Ran, L. K., Li, W. Y., Huang, A. L. and Chen, J. Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1. Journal of Virology 88, 2442-2451, 2014.
Sacconnay, L., Carrupt, P. A., and Nurisso, A. Human sirtuins: Structures and flexibility. Journal of Structural Biology 196, 534-542, 2016.
Sánchez-Paz, A. White spot syndrome virus: an overview on an emergent concern. Veterinary Research 41, 43, 2010.
Sauve, A. A., Wolberger, C., Schramm, V. L. and Boeke, J. D. The biochemistry of sirtuins. Annual Review of Biochemistry 75, 435-465, 2006.
Shi, Y., Li, Y., Huang, C., Ying, L., Xue, J., Wu, H., Chen, Z. and Yang, Z. Resveratrol enhances HBV replication through activating Sirt1-PGC-1α-PPARα pathway. Scientific Reports 6, 24744, 2016.
Shinn, A. P., Pratoomyot, J., Griffiths, D., Trong, T. Q., Vu, N. T., Jiravanichpaisal, P. and Briggs, M. Asian shrimp production and the economic costs of disease. Asian Fisheries Science 31, 29-58, 2018.
Simmons, G. E., Pruitt, W. M. and Pruitt, K. Diverse roles of SIRT1 in cancer biology and lipid metabolism. International Journal of Molecular Sciences 16, 950-965, 2015.
Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C. and Boeke, J. D. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proceedings of the National Academy of Sciences of the United States of America 97, 6658-6663, 2000.
Su, M. A., Huang, Y. T., Chen, I. T., Lee, D. Y., Hsieh, Y. C., Li, C. Y., Ng, T. H., Liang, S. Y., Lin, S. Y., Huang, S. W., Chiang, Y. A., Yu, H. T., Khoo, K. H., Chang, G. D., Lo, C. F. and Wang, H. C. An Invertebrate Warburg Effect: A Shrimp Virus Achieves Successful Replication by Altering the Host Metabolome via the PI3K-Akt-mTOR Pathway. PLoS Pathogens 6, e1004196, 2014.
Tang, H. M., Gao, W. W., Chan, C. P., Cheng, Y., Deng, J. J., Yuen, K. S., Iha, H. and Jin, D.Y. SIRT1 suppresses human T-cell leukemia virus type 1 transcription. Journal of Virology 89, 8623-8631, 2015.
Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. and Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. Journal of Biological Chemistry 282, 6823-6832, 2007.
Thakur, B. K., Chandra, A., Dittrich, T., Welte, K., and Chandra, P. Inhibition of SIRT1 by HIV-1 viral protein Tat results in activation of p53 pathway. Biochemical and Biophysical Research Communications 424, 245-250, 2012.
Tirosh, O., Cohen, Y., Shitrit, A., Shani, O., Le-Trilling, V. T. K., Trilling, M., Friedlander, G., Tanenbaum, M. and Stern-Ginossar, N. The transcription and translation landscapes during human cytomegalovirus infection reveal novel host-pathogen interactions. PLoS Pathogens 11, e1005288, 2015.
Tsai, J. M., Wang, H. C., Leu, J. H., Hsiao, H. H., Wang, A. H. J., Kou, G. H. and Lo, C. F. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. Journal of Virology 78, 11360-11370, 2004.
Tseng, Y. T., Kumar, R. and Wang, H. C. LvRas and LvRap are both important for WSSV replication in Litopenaeus vannamei. Fish and Shellfish Immunology 88, 150-160, 2019.
van Hulten, M. C., Witteveldt, J., Peters, S., Kloosterboer, N., Tarchini, R., Fiers, M., Sandbrink, H., Lankhorst, R. K. and Vlak, J. M. The white spot syndrome virus DNA genome sequence. Virology 286, 7-22, 2001.
Vassilopoulos, A., Fritz, K. S., Petersen, D. R. and Gius, D. The human sirtuin family: evolutionary divergences and functions. Human Genomics 5, 485-496, 2011.
Verbruggen, B., Bickley, L. K., Van Aerle, R., Bateman, K. S., Stentiford, G. D., Santos, E. M., and Tyler, C. R. Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments. Viruses 8, 23, 2016.
Walker, P. J. and Mohan, C. V. Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. Reviews in Aquaculture 2, 125-154, 2009.
Wang, C. H., Lo, C. F., Leu, J. H., Chou, C. M., Yeh, P. Y., Chou, H. Y., Tung, M. C., Chang, C. F., Su, M. S. and Kou, G. H. Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Diseases of Aquatic Organisms 23, 239-242, 1995.
Wang, H. C., Kondo, H., Hirono, I. and Aoki, T. The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish and Shellfish Immunology 29, 94-103, 2010.
Wang, H. C., Hirono, I., Maningas, M. B. B., Somboonwiwat, K. and Stentiford, G. ICTV Virus Taxonomy Profile: Nimaviridae. Journal of General Virology 100, 1053-1054, 2019.
Wang, S., Li, H., Weng, S., Li, C. and He, J. White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication. iScience 23, 100752, 2020.
Wood, J. G., Schwer, B., Wickremesinghe, P. C., Hartnett, D. A., Burhenn, L., Garcia, M., Li, M., Verdin, E. and Helfand, S. L. Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 115, 1564-1569, 2018.
Xie, J., Zhang, X. and Zhang, L. Negative regulation of inflammation by SIRT1. Pharmacological Research 67, 60-67, 2013.
Yan, M., Li, C., Su, Z., Liang, Q., Li, H., Liang, S., Weng, S., He, J. and Xu, X. Identification of a JAK/STAT pathway receptor domeless from Pacific white shrimp Litopenaeus vannamei. Fish and Shellfish Immunology 44, 26-32, 2015.
Yang, H., Zhang, W., Pan, H., Feldser, H. G., Lainez, E., Miller, C., Leung, S., Zhong, Z., Zhao, H., Sweitzer, S., Considine, T., Riera, T., Suri, V., White, B., Ellis, J. L., Vlasuk, G. P. and Considine, T. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PloS One 7, e46364, 2012.
Yang, H., Bi, Y., Xue, L., Wang, J., Lu, Y., Zhang, Z., Chen, X., Chu, Y., Yang, R., Wang, R. and Liu, G. Multifaceted modulation of SIRT1 in cancer and inflammation. Critical Reviews™ in Oncogenesis 20, 1-2, 2015.
Yang, T., Zhou, R., Yu, S., Yu, S., Cui, Z., Hu, P., Liu, J., Qiao, Q. and Zhang, J. Cytoplasmic SIRT1 inhibits cell migration and invasion by impeding epithelial-mesenchymal transition in ovarian carcinoma. Molecular and Cellular Biochemistry 459, 157-169, 2019.
Yao, D., Ruan, L., Xu, X. and Shi, H. Identification of a c-Jun homolog from Litopenaeus vannamei as a downstream substrate of JNK in response to WSSV infection. Developmental and Comparative Immunology 49, 282-289, 2015.
Yao, D., Ruan, L., Lu, H., Shi, H. and Xu, X. Shrimp STAT was hijacked by white spot syndrome virus immediate-early protein IE1 involved in modulation of viral genes. Fish and Shellfish Immunology 59, 268-275, 2016.
Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A. and Mayo, M. W. Modulation of NF‐κB‐dependent transcription and cell survival by the SIRT1 deacetylase. The European Molecular Biology Organization journal 23, 2369-2380, 2004.
Zaidi, N., Lupien, L., Kuemmerle, N. B., Kinlaw, W. B., Swinnen, J. V. and Smans, K. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Progress in Lipid Research 52, 585-589, 2013.
Zhan, W. B., Wang, Y. H., Fryer, J. L., Yu, K. K., Fukuda, H. and Meng, Q. X. White spot syndrome virus infection of cultured shrimp in China. Journal of Aquatic Animal Health 10, 405-410, 1998.
Zhang, X., Huang, C., Tang, X., Zhuang, Y. and Hew, C. L. Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE‐MS. Proteins: Structure, Function, and Bioinformatics 55, 229-235, 2004.
Zhang, R., Chen, H. Z., Liu, J. J., Jia, Y. Y., Zhang, Z. Q., Yang, R. F., Zhang, Y., Xu, J., Wei, Y. S., Liu, D. P. and Liang, C. C. SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages. Journal of Biological Chemistry 285, 7097-7110, 2010.
Zschoernig, B. and Mahlknecht, U. SIRTUIN 1: regulating the regulator. Biochemical and Biophysical Research Communications 376, 251-255, 2008.